Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells

Abstract

Measurements of glycolysis and mitochondrial function are required to quantify energy metabolism in a wide variety of cellular contexts. In human pluripotent stem cells (hPSCs) and their differentiated progeny, this analysis can be challenging because of the unique cell properties, growth conditions and expense required to maintain these cell types. Here we provide protocols for analyzing energy metabolism in hPSCs and their early differentiated progenies that are generally applicable to mature cell types as well. Our approach has revealed distinct energy metabolism profiles used by hPSCs, differentiated cells, a variety of cancer cells and Rho-null cells. The protocols measure or estimate glycolysis on the basis of the extracellular acidification rate, and they measure or estimate oxidative phosphorylation on the basis of the oxygen consumption rate. Assays typically require 3 h after overnight sample preparation. Companion methods are also discussed and provided to aid researchers in developing more sophisticated experimental regimens for extended analyses of cellular bioenergetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: OCR, ECAR and OCR/ECAR ratios for hPSCs and human fibroblasts.
Figure 5: Bioenergetic profile of hPSCs and human fibroblasts.
Figure 6: Comparison of data obtained with the XF24 Extracellular Flux Analyzer and conventional energy metabolism profiling methods.
Figure 7: Free fatty acid oxidation in hPSCs and human fibroblasts determined with the XF24 Extracellular Flux Analyzer.
Figure 8: Using the XF24 Extracellular Flux Analyzer with a wide variety of mammalian cell types.

Similar content being viewed by others

References

  1. Glick, B.S. & Pon, L.A. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 260, 213–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Lemaire, C. & Dujardin, G. Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis. Methods Mol. Biol. 432, 65–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kuznetsov, A.V. et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat. Protoc. 3, 965–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40, 1478–1483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker, K.A. et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell Physiol. 209, 883–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4 (suppl. 1): S60–S67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J. et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860–4873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Folmes, C.D. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Hatefi, Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015–1069 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Warburg, O. Uber den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4, 534–536 (1925).

    Article  CAS  Google Scholar 

  19. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  20. Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takubo, K. et al. Regulation of the HIF-1 alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Comte, J., Maisterrena, B. & Gautheron, D.C. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim. Biophys. Acta 419, 271–284 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Matlib, M.A., Shannon, W.A. Jr . & Srere, P.A. Measurement of matrix enzyme activity in situ in isolated mitochondria made permeable with toluene. Methods Enzymol. 56, 544–550 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Milner, D.J., Mavroidis, M., Weisleder, N. & Capetanaki, Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 150, 1283–1298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wieckowski, M.R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Wittig, I., Braun, H.P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Rolo, A.P., Palmeira, C.M. & Cortopassi, G.A. Biosensor plates detect mitochondrial physiological regulators and mutations in vivo. Anal. Biochem. 385, 176–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. McConnell, H.M. et al. The cytosensor microphysiometer: biological applications of silicon technology. Science 257, 1906–1912 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Severinghaus, J.W. & Astrup, P.B. History of blood gas analysis. IV. Leland Clark's oxygen electrode. J. Clin. Monit. 2, 125–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Silva, A.M. & Oliveira, P.J. Evaluation of respiration with Clark-type electrode in isolated mitochondria and permeabilized animal cells. Methods Mol. Biol. 810, 7–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Gohil, V.M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol. 28, 249–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie, H. et al. LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol. Cancer Ther. 8, 626–635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delgado, T. et al. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl. Acad. Sci. USA 107, 10696–10701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez Cenizo, L. et al. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J. Biol. Chem. 285, 25308–25313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Groof, A.J. et al. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol. Cancer 8, 54 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ray, L.B. Metabolism is not boring. Science 330, 1337 (2010).

    Article  PubMed  Google Scholar 

  38. Zhang, J., Khvorostov, I. & Teitell, M. From MEFs to matrigel I: passaging hESCs in the presence of MEFs. J. Vis. Exp. 16, pii: 722 (2008).

    Google Scholar 

  39. Khvorostov, I., Zhang, J. & Teitell, M. From MEFs to Matrigel 2: splitting hESCs from MEFs onto Matrigel. J. Vis. Exp. 16, pii: 831 (2008).

    Google Scholar 

  40. Zhang, J., Khvorostov, I. & Teitell, M. From MEFs to Matrigel 3: passaging hESCs from Matrigel onto Matrigel. J. Vis. Exp. 16, pii: 832 (2008).

    Google Scholar 

  41. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev. 25, 1999–2010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  45. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A. & Saavedra, E. Energy metabolism in tumor cells. FEBS J. 274, 1393–1418 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Clark, L.C. Jr . Kaplan, S., Matthews, E.C., Edwards, F.K. & Helmsworth, J.A. Monitor and control of blood oxygen tension and pH during total body perfusion. J. Thorac. Surg. 36, 488–496 (1958).

    Article  PubMed  Google Scholar 

  48. Clark, L.C.J. Monitor and control of blood and tissue oxygen tension. Trans. Am. Soc. Artif. Internal Organs 2, 41–49 (1956).

    Google Scholar 

  49. Pesta, D. & Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 810, 25–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Weegman, B.P. et al. Continuous real-time viability assessment of kidneys based on oxygen consumption. Transplant. Proc. 42, 2020–2023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crouch, S.P., Kozlowski, R., Slater, K.J. & Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunolog. Methods 160, 81–88 (1993).

    Article  CAS  Google Scholar 

  53. Scaduto, R.C. Jr . & Grotyohann, L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76, 469–477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, W.N., Wahjudi, P.N., Xu, J. & Go, V.L. Tracer-based metabolomics: concepts and practices. Clin. Biochem. 43, 1269–1277 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  55. Gerencser, A.A. et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal. Chem. 81, 6868–6878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Tang for hESCs. Supported by CIRM grants RS1-00313, RB1-01397, TB1-01183, TG2-01169, a training grant from the Broad Stem Cell Research Center at the University of California Los Angeles, and US National Institutes of Health grants GM061721, GM073981, PNEY018228, P01GM081621, CA156674 and CA90571. C.M.K. is an Established Investigator of the American Heart Association and M.A.T. was a Scholar of the Leukemia and Lymphoma Society. We thank D. Wallace (University of Pennsylvania) for Rho0 143B TK human osteosarcoma cells.

Author information

Authors and Affiliations

Authors

Contributions

J.Z.: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing; E.N.: conception and design, data collection and analysis, manuscript writing; D.R.R.W.: collection and assembly of data, data analysis and interpretation; K.S., J.S.H., C.M.V.H., S.S.I., L.V.: technical support and assistance; C.S.M.: conception and design, data analysis and interpretation, manuscript writing; C.M.K.: conception and design, data analysis and interpretation, manuscript writing; M.A.T.: conception and design, data analysis and interpretation, manuscript writing, final approval of the manuscript and financial support.

Corresponding author

Correspondence to Michael A Teitell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Overview of assessed metabolic pathways. Glucose enters into the glycolytic pathway (orange panel). Pyruvate, a cytosolic product of glycolysis, can be converted into lactate, which can be excreted from cells using monocarboxylate transporters in the plasma membrane. Assessment of the extracellular acidification rate (ECAR) using the XF24 Extracellular Flux Analyzer (indicated by a seahorse icon; Seahorse Bioscience) is a good approximation of lactate excretion under most circumstances. Pyruvate can also be converted into two molecules of acetyl-CoA, which can enter the citric acid cycle (blue circle) within the mitochondrial matrix. The citric acid cycle generates energy equivalents that feed the electron transport chain for cell respiration (green panel). The activity of individual electron transport chain complexes (CI – IV and CV, the ATP synthase) can be assessed using specific inhibitors (indicated next to the complexes they inhibit) by measuring oxygen consumption with either the XF24 analyzer or a Clark-type oxygen electrode. The glycerol-3-phosphate-cycle (purple panel) links the glycolytic pathway, through the intermediate dihydroxyacetone-phosphate, to the electron transport chain. The flavoprotein-dehydrogenase (FP-dehydrogenase) transfers electrons from glycerol-3-phosphate to FAD to generate FADH2 that subsequently passes electrons from ubiquinone (Q) to ubiquinol (QH2). Finally, QH2 supplies electrons to the electron transport chain (see glycerol-3-phosphate as a substrate in Table 3). (TIFF 2070 kb)

Supplementary Fig. 2

OCR/ECAR ratios for normal human dermal fibroblast (NHDF) cells grown with or without 10 µM ROCK inhibitor (RI). Error bars represent the mean ± SD (n = 3). Figure is reprinted with permission from ref 14. (TIFF 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Nuebel, E., Wisidagama, D. et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7, 1068–1085 (2012). https://doi.org/10.1038/nprot.2012.048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing