Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM

Journal name:
Nature Protocols
Volume:
6,
Pages:
1341–1354
Year published:
DOI:
doi:10.1038/nprot.2011.367
Published online

Abstract

Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank–formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

At a glance

Figures

  1. Description of the prediction algorithm.
    Figure 1: Description of the prediction algorithm.

    (a) Schematic illustration of the concept of the prediction algorithm. If complementary partners (IL and IR) of a template interface are similar to surface regions of any two targets (TL and TR), these two targets can interact with each other via these regions. The red points are hot spots. These incorporate evolutionary information into the matching. (b) The flowchart of the algorithm. There are two data sets in the algorithm: the template data set and the target data set. First, the surface of the proteins in the target data set is extracted. Next, each partner of the template interface is aligned with the target surfaces. If the match passes the residue and hot spot matching thresholds, these targets are transformed on the template interface. If there are colliding residues (e.g., atoms of the residues penetrate into each other's van der Waals radii after they are transformed onto the corresponding template interface) between the two partner targets, the putative complexes are eliminated. Otherwise, the predicted complexes are flexibly refined with their global energies computed. The best solution is chosen as the one with the lowest energy value.

  2. The putative Falcipain-Cystatin complex predicted by PRISM using template 1stfEI.
    Figure 2: The putative Falcipain-Cystatin complex predicted by PRISM using template 1stfEI.
  3. The putative Chk1-p16ink complex predicted by PRISM using templates 1blxAB and 1fmaDE.
    Figure 3: The putative Chk1-p16ink complex predicted by PRISM using templates 1blxAB and 1fmaDE.

    Template interfaces are represented by balls to show the matching parts of the target surface with the template interface partners.

References

  1. Kleanthous, C. Protein-Protein Recognition: Frontiers in Molecular Biology (Oxford University Press, 2001).
  2. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141147 (2002).
  3. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623627 (2000).
  4. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248250 (2003).
  5. Xenarios, I. et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303305 (2002).
  6. Berman, H.M. et al. The protein data bank. Nucleic Acids Res. 28, 235242 (2000).
  7. Bogan, A.A. & Thorn, K.S. Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 19 (1998).
  8. Pazos, F., Helmer-Citterich, M., Ausiello, G. & Valencia, A. Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271, 511523 (1997).
  9. Andrusier, N., Mashiach, E., Nussinov, R. & Wolfson, H.J. Principles of flexible protein-protein docking. Proteins 73, 271289 (2008).
  10. Gray, J.J. High-resolution protein-protein docking. Curr. Opin. Struct. Biol. 16, 183193 (2006).
  11. Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409443 (2002).
  12. de Vries, S.J., van Dijk, M. & Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883897 (2010).
  13. Lesk, V.I. & Sternberg, M.J. 3D-Garden: a system for modelling protein-protein complexes based on conformational refinement of ensembles generated with the marching cubes algorithm. Bioinformatics 24, 11371144 (2008).
  14. Cheng, T.M., Blundell, T.L. & Fernandez-Recio, J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68, 503515 (2007).
  15. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 8087 (2003).
  16. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363W367 (2005).
  17. Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J. & Huang, E.S. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci. 13, 190202 (2004).
  18. Keskin, O., Tsai, C.J., Wolfson, H. & Nussinov, R. A new, structurally nonredundant, diverse data set of protein-protein interfaces and its implications. Protein Sci. 13, 10431055 (2004).
  19. Tsai, C.J., Lin, S.L., Wolfson, H.J. & Nussinov, R. A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique. J. Mol. Biol. 260, 604620 (1996).
  20. Tsai, C.J., Lin, S.L., Wolfson, H.J. & Nussinov, R. Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. Crit. Rev. Biochem. Mol. Biol. 31, 127152 (1996).
  21. Keskin, O. & Nussinov, R. Similar binding sites and different partners: implications to shared proteins in cellular pathways. Structure 15, 341354 (2007).
  22. Aytuna, A.S., Gursoy, A. & Keskin, O. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21, 28502855 (2005).
  23. Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R. & Gursoy, A. PRISM: protein interactions by structural matching. Nucleic Acids Res. 33, W331W336 (2005).
  24. Keskin, O., Nussinov, R. & Gursoy, A. PRISM: protein-protein interaction prediction by structural matching. Methods Mol. Biol. 484, 505521 (2008).
  25. Kar, G., Gursoy, A. & Keskin, O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput. Biol. 5, e1000601 (2009).
  26. Tuncbag, N., Kar, G., Gursoy, A., Keskin, O. & Nussinov, R. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol. Biosyst. 5, 17701778 (2009).
  27. Kar, G., Keskin, O., Gursoy, A. & Nussinov, R. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 10, 7157122 (2010).
  28. Acuner Ozbabacan, S.E., Gursoy, A., Keskin, O. & Nussinov, R. Conformational ensembles, signal transduction and residue hot spots: application to drug discovery. Curr. Opin. Drug. Discov. Devel. 13, 527537 (2010).
  29. Keskin, O. & Nussinov, R. Favorable scaffolds: proteins with different sequence, structure and function may associate in similar ways. Protein Eng. Des. Sel. 18, 1124 (2005).
  30. Tuncbag, N., Gursoy, A., Guney, E., Nussinov, R. & Keskin, O. Architectures and functional coverage of protein-protein interfaces. J. Mol. Biol. 381, 785802 (2008).
  31. Shatsky, M., Nussinov, R. & Wolfson, H.J. A method for simultaneous alignment of multiple protein structures. Proteins 56, 143156 (2004).
  32. Mashiach, E., Nussinov, R. & Wolfson, H.J. FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78, 15031519 (2010).
  33. Aloy, P. & Russell, R.B. Interrogating protein interaction networks through structural biology. Proc. Natl Acad. Sci. USA 99, 58965901 (2002).
  34. Kundrotas, P.J., Lensink, M.F. & Alexov, E. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles. Int. J. Biol. Macromol. 43, 198208 (2008).
  35. Lu, L., Lu, H. & Skolnick, J. MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49, 350364 (2002).
  36. Martin, J. Beauty is in the eye of the beholder: proteins can recognize binding sites of homologous proteins in more than one way. PLoS Comput. Biol. 6, e1000821 (2010).
  37. Gunther, S., May, P., Hoppe, A., Frommel, C. & Preissner, R. Docking without docking: ISEARCH—prediction of interactions using known interfaces. Proteins 69, 839844 (2007).
  38. Sinha, R., Kundrotas, P.J. & Vakser, I.A. Docking by structural similarity at protein-protein interfaces. Proteins 78, 32353241 (2010).
  39. Kundrotas, P.J. & Vakser, I.A. Accuracy of protein-protein binding sites in high-throughput template-based modeling. PLoS Comput. Biol. 6, e1000727 (2010).
  40. Xie, L. & Bourne, P.E. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models. PLoS Comput. Biol. 1, e31 (2005).
  41. Xie, L., Xie, L. & Bourne, P.E. Structure-based systems biology for analyzing off-target binding. Curr. Opin. Struct. Biol. 21, 189199 (2011).
  42. Bradford, J.R. & Westhead, D.R. Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21, 14871494 (2005).
  43. Liang, S., Zhang, C., Liu, S. & Zhou, Y. Protein binding site prediction using an empirical scoring function. Nucleic Acids Res. 34, 36983707 (2006).
  44. Wells, J.A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 202, 390411 (1991).
  45. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA 85, 24442448 (1988).
  46. Hubbard, S.J. & Thornton, J.M. Naccess (Department of Biochemistry and Molecular Biology, University College, London, 1993).
  47. Hwang, H., Pierce, B., Mintseris, J., Janin, J. & Weng, Z. Protein-protein docking benchmark version 3.0. Proteins 73, 705709 (2008).
  48. Tuncbag, N., Keskin, O. & Gursoy, A. HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res. 38 (Suppl): W402W406 (2010).
  49. Tuncbag, N., Gursoy, A. & Keskin, O. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25, 15131520 (2009).
  50. Fischer, T.B. et al. The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics 19, 14531454 (2003).
  51. Thorn, K.S. & Bogan, A.A. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17, 284285 (2001).
  52. MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 35863616 (1998).

Download references

Author information

Affiliations

  1. Center for Computational Biology and Bioinformatics, College of Engineering, Koc University, Rumelifeneri Yolu, Sariyer Istanbul, Turkey.

    • Nurcan Tuncbag,
    • Attila Gursoy &
    • Ozlem Keskin
  2. Basic Science Program, SAIC-Frederick Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, USA.

    • Ruth Nussinov
  3. Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

    • Ruth Nussinov

Contributions

A.G. and O.K. developed the initial PRISM concept. N.T., A.G., R.N. and O.K. contributed substantially to the design and implementation of the current flexible PRISM. N.T. did coding and wrote the initial manuscript. All authors contributed substantially to the discussion of the results and to the writing of the paper.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Additional data