Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen

Abstract

This protocol has been designed to generate neural precursor cells (NPCs) from human embryonic stem cells (hESCs) using a physiological oxygen (O2) level of 3% (previously termed hypoxia) and chemically defined conditions. The first stage involves suspension culture of hESC colonies at 3% O2, where they acquire a neuroepithelial identity over a period of 2 weeks. This timescale is comparable to that observed at 20% O2, but survival is enhanced. Sequential application of retinoic acid and purmorphamine (PM), from day 14 to day 28, directs differentiation toward spinal motor neurons. Alternatively, addition of fibroblast growth factor-8 and PM generates midbrain dopaminergic neurons. OLIG2 (encoding oligodendrocyte lineage transcription factor 2) induction in motor neuron precursors is twofold greater than that at 20% O2, whereas EN1 (encoding engrailed homeobox 1) expression is enhanced fivefold. NPCs (at 3% O2) can be differentiated into all three neural lineages, and such cultures can be maintained long term in the absence of neurotrophins. The ability to generate defined cell types at 3% O2 should represent a significant advancement for in vitro disease modeling and potentially for cell-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hESC culture.
Figure 2: Procedure for neural conversion.
Figure 3: NPC generation at 3% O2.
Figure 4: Functional differentiation at 3% O2.
Figure 5: Spinal motor neurons.
Figure 6: Midbrain dopaminergic neurons.

Similar content being viewed by others

References

  1. Zhao, T. et al. Hypoxia-driven proliferation of embryonic neural stem/progenitor cells—role of hypoxia-inducible transcription factor-1alpha. FEBS J. 275, 1824–1834 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Erceg, S., Ronaghi, M. & Stojkovic, M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27, 78–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hedlund, E. & Perlmann, T. Neuronal cell replacement in Parkinson's disease. J. Intern. Med. 266, 358–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Conti, L. & Cattaneo, E. Neural stem cell systems: physiological players or in vitro entities? Nat. Rev. Neurosci. 11, 176–187 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Munoz-Sanjuan, I. & Brivanlou, A.H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Smukler, S.R., Runciman, S.B., Xu, S. & van der Kooy, D. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cimadamore, F. et al. Nicotinamide rescues human embryonic stem cell-derived neuroectoderm from parthanatic cell death. Stem Cells 27, 1772–1781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke, L. & van der Kooy, D. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 27, 1879–1886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho, M.S., Hwang, D.Y. & Kim, D.W. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat. Protoc. 3, 1888–1894 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Perrier, A.L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Li, T.S. & Marban, E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28, 1178–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelly, C.M. et al. Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nat. Methods 6, 271–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Erecinska, M. & Silver, I.A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Csete, M. Oxygen in the cultivation of stem cells. Ann. NY Acad. Sci. 1049, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Simon, M.C. & Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat. Rev. Mol. Cell Biol. 9, 285–296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pistollato, F., Chen, H.L., Schwartz, P.H., Basso, G. & Panchision, D.M. Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol. Cell Neurosci. 35, 424–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, H.L. et al. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25, 2291–2301 (2007).

    Article  PubMed  Google Scholar 

  19. Covello, K.L. et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gustafsson, M.V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Forristal, C.E., Wright, K.L., Hanley, N.A., Oreffo, R.O. & Houghton, F.D. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Morrison, S.J. et al. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Milosevic, J. et al. Low atmospheric oxygen avoids maturation, senescence and cell death of murine mesencephalic neural precursors. J. Neurochem. 92, 718–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Storch, A. et al. Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp. Neurol. 170, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Maciaczyk, J., Singec, I., Maciaczyk, D. & Nikkhah, G. Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp. Neurol. 213, 354–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Akundi, R.S. & Rivkees, S.A. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells. PLoS One 4, e4739 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li, D., Marks, J.D., Schumacker, P.T., Young, R.M. & Brorson, J.R. Physiological hypoxia promotes survival of cultured cortical neurons. Eur. J. Neurosci. 22, 1319–1326 (2005).

    Article  PubMed  Google Scholar 

  31. Stacpoole, S.R. et al. Derivation of neural precursor cells from human ES cells at 3% O(2) is efficient, enhances survival and presents no barrier to regional specification and functional differentiation. Cell Death Differ. 18, 1016–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siddiq, A. et al. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J. Neurosci. 29, 8828–8838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan, Y. et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781–790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X.J. et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26, 886–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joannides, A.J. et al. A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25, 731–737 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Vallier, L. Serum-free and feeder-free culture conditions for human embryonic stem cells. Methods Mol. Biol. 690, 57–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Cho, M.S. et al. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 3392–3397 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Svendsen, C.N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Trotti, D., Danbolt, N.C. & Volterra, A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 19, 328–334 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Behl, C. & Moosmann, B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol. Chem. 383, 521–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Wright, W.E. & Shay, J.W. Inexpensive low-oxygen incubators. Nat. Protoc. 1, 2088–2090 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Allen, C.B., Schneider, B.K. & White, C.W. Limitations to oxygen diffusion and equilibration in in vitro cell exposure systems in hyperoxia and hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L1021–L1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Wion, D., Christen, T., Barbier, E.L. & Coles, J.A. PO2 matters in stem cell culture. Cell Stem Cell 5, 242–243 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Hartung, O., Huo, H., Daley, G.Q. & Schlaeger, T.M. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells. Curr. Protoc. Stem Cell Biol. 14, 1C.10.1–1C.10.15 (2010).

    Article  Google Scholar 

  45. Patani, R. et al. Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One 4, e7327 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moe, M.C. et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128, 2189–2199 (2005).

    Article  PubMed  Google Scholar 

  47. Bouhon, I.A., Joannides, A., Kato, H., Chandran, S. & Allen, N.D. Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24, 1908–1913 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology (John Wiley, 2003).

Download references

Acknowledgements

We are grateful to L. Vallier for kindly providing feeder-free ES cells, M. Alexander for valuable technical assistance and R. Barker for the use of the low-oxygen incubator. This work was supported by the Multiple Sclerosis Society UK, the Evelyn Trust, the Medical Research Council, the National Institute for Health Research (Cambridge Biomedical Research Centre), the Wellcome Trust (A.L.) and the Royal Society (R.K.). S.R.L.S. is supported by a Sir David Walker Fellowship, a joint Medical Research Council and Multiple Sclerosis Society Clinical Research Training Fellowship (no. G0800487) and a Raymond and Beverly Sackler Studentship. We obtained the hybridomas Hb9 (MNR2) and En1, developed by T.M. Jessell and S. Brenner-Morton, from the Developmental Studies Hybridoma bank developed under the auspices of the National Institute of Child Health and Human Development and maintained by the Department of Biology at the University of Iowa.

Author information

Authors and Affiliations

Authors

Contributions

S.R.L.S., B.B., D.J.W. and S.C. designed the experiments; S.R.L.S., B.B. and X.L.H. conducted the experiments; A.L. and R.K. performed the neuronal electrophysiology; S.R.L.S., B.B., A.L. and R.K. analyzed the data; A.C., R.J.M.F. and S.C. supervised the project; S.R.L.S., B.B., D.J.W., A.L., A.C., R.K., R.J.M.F. and S.C. wrote the protocol.

Corresponding author

Correspondence to S R L Stacpoole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacpoole, S., Bilican, B., Webber, D. et al. Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen. Nat Protoc 6, 1229–1240 (2011). https://doi.org/10.1038/nprot.2011.380

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.380

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing