Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues

Abstract

Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9–10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of SFEBq methods for retinal and cortical tissue differentiation from mouse ESCs.
Figure 2: SFEBq culture of mouse ESCs.
Figure 3: Self-organizing optic cup formation in 3D ESC culture.
Figure 4: Generation of stratified retina from the isolated retinal epithelium.
Figure 5: Induction of polarized cortical tissues from mouse ESCs.

Similar content being viewed by others

References

  1. Munoz-Sanjuan, I. & Brivanlou, A.H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kamiya, D. et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470, 503–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl. Acad. Sci. USA 105, 11796–11801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muguruma, K. et al. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat. Neurosci. 13, 1171–1180 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Danjo, T. et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J. Neurosci. 31, 1919–1933 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Adler, R. & Canto-Soler, M.V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol. 305, 1–13 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez-Morales, J.R. & Wittbrodt, J. Shaping the vertebrate eye. Curr. Opin. Genet. Dev. 19, 511–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Cayouette, M., Poggi, L. & Harris, W.A. Lineage in the vertebrate retina. Trends Neurosci. 29, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Livesey, F.J. & Cepko, C.L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda, H. et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 11331–11336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 4, 811–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara, H. et al. Regulation of mesodermal differentiation of mouse embryonic stem cells by basement membranes. J. Biol. Chem. 282, 29701–29711 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Bailey, T.J. et al. Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol. 48, 761–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Morales, J.R., Rodrigo, I. & Bovolenta, P. Eye development: a view from the retina pigmented epithelium. Bioessays 26, 766–777 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Tang, K. et al. COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development 137, 725–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norden, C., Young, S., Link, B.A. & Harris, W.A. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138, 1195–1208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacLaren, R.E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lamba, D.A., Gust, J. & Reh, T.A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4, 73–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seiler, M.J. et al. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration. Vet. Ophthalmol. 12, 158–169 (2009).

    Article  PubMed  Google Scholar 

  25. Yang, P.B. et al. Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp. Eye Res. 91, 727–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ali, R.R. & Sowden, J.C. Regenerative medicine: DIY eye. Nature 472, 42–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lamba, D.A. et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5, e8763 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 8, 988–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Niwa, H., Masui, S., Chambers, I., Smith, A.G. & Miyazaki, J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526–1536 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Tanaka and M. Kawada for critical reading. The Sox1GFP ES cell line was a kind gift from A. Smith (University of Cambridge). This work was supported by grants-in-aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Y.S., M.E.), the Knowledge Cluster Initiative at Kobe and the Leading Project for Realization of Regenerative Medicine (Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and M.E. wrote the manuscript, and M.E. performed experiments and data analysis.

Corresponding authors

Correspondence to Mototsugu Eiraku or Yoshiki Sasai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiraku, M., Sasai, Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7, 69–79 (2012). https://doi.org/10.1038/nprot.2011.429

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing