Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors

Abstract

Lentiviral vectors derived from the human immunodeficiency type 1 virus (HIV-1 LV) are among the finest tools available today for the genetic modification of human monocyte-derived dendritic cells (MDDCs). However, this process is largely inefficient because MDDCs show a strong resistance to HIV-1 transduction. Here we describe a step-by-step protocol from the production of LVs to cell transduction that allows the efficient genetic modification of MDDCs. This protocol can be completed in 23 d from the initial phase of LV production to the final analysis of the results of MDDC transduction. The method relies on the simultaneous addition of HIV-1 LVs along with noninfectious virion-like particles carrying Vpx, a nonstructural protein encoded by the simian immunodeficiency virus (Vpx-VLPs). When thus provided in target cells, Vpx exerts a strong positive effect on incoming LVs by counteracting the restriction present in MDDCs; accordingly, 100% of cells can be transduced with low viral inputs. Vpx-VLPs will improve the efficiency of LV-mediated transduction of MDDCs with vectors for both ectopic gene expression and depletion studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the method outlined in this protocol and anticipated results.

Similar content being viewed by others

References

  1. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Esslinger, C. et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8+ T cell responses. J. Clin. Invest. 111, 1673–1681 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banchereau, J. & Palucka, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5, 296–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Dullaers, M. & Thielemans, K. From pathogen to medicine: HIV-1-derived lentiviral vectors as vehicles for dendritic cell based cancer immunotherapy. J. Gene Med. 8, 3–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, L. et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat. Biotechnol. 26, 326–334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan, P.H. et al. Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105, 3824–3832 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Timares, L., Douglas, J.T., Tillman, B.W., Krasnykh, V. & Curiel, D.T. Adenovirus-mediated gene delivery to dendritic cells. Methods Mol. Biol. 246, 139–154 (2004).

    CAS  PubMed  Google Scholar 

  8. Mangeot, P.E. et al. High levels of transduction of human dendritic cells with optimized SIV vectors. Mol. Ther. 5, 283–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ponnazhagan, S., Mahendra, G., Curiel, D.T. & Shaw, D.R. Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J. Virol. 75, 9493–9501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, X., He, J. & Chang, L.J. Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells. Retrovirology 1, 37 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dullaers, M. et al. Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Therapy 13, 630–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Berger, G., Goujon, C., Darlix, J.L. & Cimarelli, A. SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors. Gene Therapy 16, 159–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Goujon, C. et al. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Therapy 13, 991–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Goujon, C. et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4, 2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bergamaschi, A. et al. The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J. Virol. 83, 4854–4860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharova, N. et al. Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog. 4, e1000057 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Srivastava, S. et al. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 4, e1000059 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stremlau, M. et al. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y., Li, X., Stremlau, M., Lee, M. & Sodroski, J. Removal of arginine 332 allows human TRIM5alpha to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 80, 6738–6744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Neil, S.J., Zang, T. & Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pion, M. et al. APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J. Exp. Med. 203, 2887–2893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kewalramani, V.N. & Emerman, M. Vpx association with mature core structures of HIV-2. Virology 218, 159–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Accola, M.A., Bukovsky, A.A., Jones, M.S. & Gottlinger, H.G. A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J. Virol 73, 9992–9999 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fletcher, T.M. III et al. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J. 15, 6155–6165 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tiscornia, G., Singer, O. & Verma, I.M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tiscornia, G., Singer, O. & Verma, I.M. Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat. Protoc. 1, 234–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kutner, R.H., Zhang, X.Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 4, 495–505 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Simmons, A. & Jantz, K. Use of a lentivirus/VSV pseudotype virus for highly efficient genetic redirection of human peripheral blood lymphocytes. Nat. Protoc. 1, 2688–2700 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Tanese, N., Roth, M. & Goff, S.P. Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 4944–4948 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by grants from the Agence Nationale de Recherche sur le SIDA (ANRS), SIDACTION, the Fondation pour la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale and Ecole Normale Supérieure de Lyon (ENS-Lyon). S.D. is a post-doctoral fellow of the ANRS. A.C. is supported by the Centre National de la Recherche Sciéntifique (CNRS). The authors are indebted to D. Rigal and J. Bernaud at the Etablissement Français du Sang in Lyon for providing human blood-derived material.

Author information

Authors and Affiliations

Authors

Contributions

C.G., G.B., S.D., X.-N.N. and S.C. developed and continually improved the protocol over the years. A.C. and J.-L.D. supervised the project. A.C., S.D. and G.B. prepared the manuscript.

Corresponding author

Correspondence to Andrea Cimarelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, G., Durand, S., Goujon, C. et al. A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors. Nat Protoc 6, 806–816 (2011). https://doi.org/10.1038/nprot.2011.327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.327

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing