Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring protein expression in whole-cell extracts by targeted label- and standard-free LC-MS/MS

Abstract

Targeted quantification of proteins is a daily task in biological research but often relies on techniques such as western blotting that are only barely quantitative. Here we present a broadly applicable workflow for protein quantification from unpurified whole-cell extracts that can be completed in less than 3 d. Without prefractionation or affinity enrichment, a whole-cell extract is trypsin-digested in an acetonitrile-containing ammonium carbonate buffer and high-molecular-weight compounds are removed by filtration. A normalization strategy, which involves endogenous reference proteins, facilitates the determination of relative changes in protein expression without requiring isotope labeling or standard addition. On a triple-quadrupole mass spectrometer, we demonstrate standard-free quantification of yeast proteins present over five orders of magnitude and present at ≥500 copies per cell. Liquid chromatography/multiple reaction monitoring (LC-MRM)–based proteomics is therefore a next-generation alternative to western blotting, as it allows simultaneous and reliable quantification of multiple endogenous proteins without the need for enrichment, isotope labeling or use of antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow.
Figure 2: MRM-based detection of tryptic peptides for proteins present at different cellular concentrations in whole-proteome digests.
Figure 3
Figure 4: Linearity of quantification over several orders of magnitude.
Figure 5: Induction of galactose structural proteins studied in whole-cell extracts by standard-free and label-free MRM.

Similar content being viewed by others

References

  1. Walsh, C.T., Garneau-Tsodikova, S. & Gatto, G.J. Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed 44, 7342–7372 (2005).

    Article  CAS  Google Scholar 

  2. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  Google Scholar 

  3. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).

    Article  CAS  Google Scholar 

  4. Westermeier, R. & Gronau, S. Electrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations 3rd edn. (Wiley-VCH, 2001).

  5. Voshol, H., Ehrat, M., Traenkle, J., Bertrand, E. & van Oostrum, J. Antibody-based proteomics: analysis of signaling networks using reverse protein arrays. FEBS J. 276, 6871–6879 (2009).

    Article  CAS  Google Scholar 

  6. Mann, M. Can proteomics retire the western blot? J. Proteome Res. 7, 3065 (2008).

    Article  CAS  Google Scholar 

  7. Kiyonami, R. et al. Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol. Cell Proteomics 10, M110.002931 (2011).

    Article  Google Scholar 

  8. Wamelink, M.M. et al. The difference between rare and exceptionally rare: molecular characterization of ribose 5-phosphate isomerase deficiency. J. Mol. Med. 88, 931–939 (2010).

    Article  CAS  Google Scholar 

  9. Timmermann, B. et al. A new dominant peroxiredoxin allele identified by whole-genome resequencing of random mutagenized yeast causes oxidant-resistance and premature aging. Aging 2, 475–486 (2010).

    Article  CAS  Google Scholar 

  10. Addona, T.A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    Article  CAS  Google Scholar 

  11. Gaspari, M., Abbonante, V. & Cuda, G. Gel-free sample preparation for the nanoscale LC-MS/MS analysis and identification of low-nanogram protein samples. J. Sep. Sci. 30, 2210–2216 (2007).

    Article  CAS  Google Scholar 

  12. Yeung, Y.G., Nieves, E., Angeletti, R.H. & Stanley, E.R. Removal of detergents from protein digests for mass spectrometry analysis. Anal. Biochem. 382, 135–137 (2008).

    Article  CAS  Google Scholar 

  13. Strader, M.B., Tabb, D.L., Hervey, W.J., Pan, C. & Hurst, G.B. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal. Chem. 78, 125–134 (2006).

    Article  CAS  Google Scholar 

  14. Russell, W.K., Park, Z.Y. & Russell, D.H. Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal. Chem. 73, 2682–2685 (2001).

    Article  CAS  Google Scholar 

  15. Slysz, G.W. & Schriemer, D.C. On-column digestion of proteins in aqueous-organic solvents. Rapid Commun. Mass Spectrom. 17, 1044–1050 (2003).

    Article  CAS  Google Scholar 

  16. Simon, L.M., László, K., Vértesi, A., Bagi, K. & Szajáni, B. Stability of hydrolytic enzymes in water-organic solvent systems. J. Mol. Catal. B Enzym. 4, 41–45 (1998).

    Article  CAS  Google Scholar 

  17. van Midwoud, P.M., Rieux, L., Bischoff, R., Verpoorte, E. & Niederlander, H.A. Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides. J. Proteome Res. 6, 781–791 (2007).

    Article  CAS  Google Scholar 

  18. Wisniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  19. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    Article  Google Scholar 

  20. Kettenbach, A.N., Rush, J. & Gerber, S.A. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 6, 175–186 (2011).

    Article  CAS  Google Scholar 

  21. Chen, Y. et al. Quantification of beta-catenin signaling components in colon cancer cell lines, tissue sections, and microdissected tumor cells using reaction monitoring mass spectrometry. J. Proteome Res. 9, 4215–4227 (2010).

    Article  CAS  Google Scholar 

  22. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A. & White, F.M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA 104, 5860–5865 (2007).

    Article  CAS  Google Scholar 

  23. Ciccimaro, E., Hanks, S.K., Yu, K.H. & Blair, I.A. Absolute quantification of phosphorylation on the kinase activation loop of cellular focal adhesion kinase by stable isotope dilution liquid chromatography/mass spectrometry. Anal. Chem. 81, 3304–3313 (2009).

    Article  CAS  Google Scholar 

  24. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  25. Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article  CAS  Google Scholar 

  26. Warringer, J. & Blomberg, A. Evolutionary constraints on yeast protein size. BMC Evol. Biol. 6, 61 (2006).

    Article  Google Scholar 

  27. Cagney, G., Amiri, S., Premawaradena, T., Lindo, M. & Emili, A. In silico proteome analysis to facilitate proteomics experiments using mass spectrometry. Proteome Sci. 1, 5 (2003).

    Article  Google Scholar 

  28. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  29. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  Google Scholar 

  30. Hopfgartner, G. et al. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom. 39, 845–855 (2004).

    Article  CAS  Google Scholar 

  31. Kirkpatrick, D.S., Gerber, S.A. & Gygi, S.P. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273 (2005).

    Article  CAS  Google Scholar 

  32. Gerber, S.A., Kettenbach, A.N., Rush, J. & Gygi, S.P. The absolute quantification strategy: application to phosphorylation profiling of human separase serine 1126. Methods Mol. Biol. 359, 71–86 (2007).

    Article  CAS  Google Scholar 

  33. Lohr, D., Venkov, P. & Zlatanova, J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9, 777–787 (1995).

    Article  CAS  Google Scholar 

  34. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  35. Anderson, N.L. et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004).

    Article  CAS  Google Scholar 

  36. Unwin, R.D., Griffiths, J.R. & Whetton, A.D. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS). Nat. Protoc. 4, 870–877 (2009).

    Article  CAS  Google Scholar 

  37. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  Google Scholar 

  38. Prakash, A. et al. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. J. Proteome Res. 8, 2733–2739 (2009).

    Article  CAS  Google Scholar 

  39. Reinert, K. & Kohlbacher, O. OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol. Biol. 604, 201–211 (2010).

    Article  CAS  Google Scholar 

  40. Deutsch, E.W., Lam, H. & Aebersold, R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 9, 429–434 (2008).

    Article  CAS  Google Scholar 

  41. Picotti, P. et al. A database of mass spectrometric assays for the yeast proteome. Nat. Methods 5, 913–914 (2008).

    Article  CAS  Google Scholar 

  42. Fusaro, V.A., Mani, D.R., Mesirov, J.P. & Carr, S.A. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 27, 190–198 (2009).

    Article  CAS  Google Scholar 

  43. Page, J.S., Kelly, R.T., Tang, K. & Smith, R.D. Ionization and transmission efficiency in an electrospray ionization-mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18, 1582–1590 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Lukaszewska-McGreal for help with sample preparation, our lab members for critical discussions and the Max Planck Institute for Molecular Genetics for funding. M.R. is a Wellcome Trust Research Career Development and Wellcome-Beit prize Fellow.

Author information

Authors and Affiliations

Authors

Contributions

K.B. designed and conducted experiments and contributed to the writing of the paper. M.R. designed and conducted experiments and contributed to the writing of the paper.

Corresponding author

Correspondence to Markus Ralser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures 1 and 2

Supplementary Figure 1: Relative protein abundance in incomplete tryptic digests (PDF 644 kb)

Supplementary Figure 2: Detection of Cps1p in high concentrated protein extract.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluemlein, K., Ralser, M. Monitoring protein expression in whole-cell extracts by targeted label- and standard-free LC-MS/MS. Nat Protoc 6, 859–869 (2011). https://doi.org/10.1038/nprot.2011.333

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.333

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research