Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexizymes for genetic code reprogramming

Abstract

Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to nonproteinogenic ones; thus, specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. Here we describe a protocol that facilitates genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of nonproteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-methyl amino acids, D-amino acids and physiologically stable macrocyclic scaffolds. The facility of the protocol allows a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions. Preparation of flexizymes and tRNA used for genetic code reprogramming, optimization of flexizyme reaction conditions and expression of nonstandard peptides using the FIT system can be completed by one person in 1 week. However, once the flexizymes and tRNAs are in hand and reaction conditions are fixed, synthesis of acyl-tRNAs and peptide expression is generally completed in 1 d, and alteration of a peptide sequence can be achieved by simply changing the corresponding mRNA template.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of genetic code reprogramming and expression of nonstandard peptides using the FIT system.
Figure 2
Figure 3: Acid PAGE analysis of products of flexizyme reaction with microhelix RNA under various reaction conditions.
Figure 4: Typical results of cyclic N-alkyl peptide syntheses by genetic code reprogramming.

References

  1. Forster, A.C. et al. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl. Acad. Sci. USA 100, 6353–6357 (2003).

    Article  CAS  Google Scholar 

  2. Josephson, K., Hartman, M.C. & Szostak, J.W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    Article  CAS  Google Scholar 

  3. Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).

    Article  CAS  Google Scholar 

  4. Hecht, S.M., Alford, B.L., Kuroda, Y. & Kitano, S. 'Chemical aminoacylation' of tRNA's. J. Biol. Chem. 253, 4517–4520 (1978).

    CAS  PubMed  Google Scholar 

  5. Wang, L., Xie, J. & Schultz, P.G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006).

    Article  Google Scholar 

  6. Noren, C.J., Anthony-Cahill, S.J., Griffith, M.C. & Schultz, P.G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).

    Article  CAS  Google Scholar 

  7. Hohsaka, T., Ashizuka, Y., Murakami, H. & Sisido, M. Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J. Am. Chem. Soc. 118, 9778–9779 (1996).

    Article  CAS  Google Scholar 

  8. Cropp, T.A., Anderson, J.C. & Chin, J.W. Reprogramming the amino-acid substrate specificity of orthogonal aminoacyl-tRNA synthetases to expand the genetic code of eukaryotic cells. Nat. Protoc. 2, 2590–2600 (2007).

    Article  CAS  Google Scholar 

  9. Murakami, H., Saito, H. & Suga, H. A versatile tRNA aminoacylation catalyst based on RNA. Chem. Biol. 10, 655–662 (2003).

    Article  CAS  Google Scholar 

  10. Niwa, N., Yamagishi, Y., Murakami, H. & Suga, H. A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg. Med. Chem. Lett. 19, 3892–3894 (2009).

    Article  CAS  Google Scholar 

  11. Sako, Y., Morimoto, J., Murakami, H. & Suga, H. Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J. Am. Chem. Soc. 130, 7232–7234 (2008).

    Article  CAS  Google Scholar 

  12. Goto, Y., Murakami, H. & Suga, H. Initiating translation with D-amino acids. RNA 14, 1390–1398 (2008).

    Article  CAS  Google Scholar 

  13. Goto, Y. et al. Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem. Biol. 3, 120–129 (2008).

    Article  CAS  Google Scholar 

  14. Kawakami, T., Murakami, H. & Suga, H. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem. Biol. 15, 32–42 (2008).

    Article  CAS  Google Scholar 

  15. Kawakami, T., Murakami, H. & Suga, H. Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J. Am. Chem. Soc. 130, 16861–16863 (2008).

    Article  CAS  Google Scholar 

  16. Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol. 14, 1315–1322 (2007).

    Article  CAS  Google Scholar 

  17. Goto, Y. & Suga, H. Translation initiation with initiator tRNA charged with exotic peptides. J. Am. Chem. Soc. 131, 5040–5041 (2009).

    Article  CAS  Google Scholar 

  18. Xiao, H., Murakami, H., Suga, H. & Ferre-D'Amare, A.R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).

    Article  CAS  Google Scholar 

  19. Kawakami, T. et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5, 888–890 (2009).

    Article  CAS  Google Scholar 

  20. Hornbogen, T. & Zocher, R. Biosynthesis of N-methylated peptides in fungi. In Handbook of Industrial Mycology, Mycology Series v. 22 (ed., Zhiqiang, A.) 449–477 (Marcel Dekker, 2005).

  21. Patch, J.A. & Barron, A.E. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr. Opin. Chem. Biol. 6, 872–877 (2002).

    Article  CAS  Google Scholar 

  22. Sagan, S., Karoyan, P., Lequin, O., Chassaing, G. & Lavielle, S. N- and C alpha-methylation in biologically active peptides: synthesis, structural and functional aspects. Curr. Med. Chem. 11, 2799–2822 (2004).

    Article  CAS  Google Scholar 

  23. Kwon, Y.U. & Kodadek, T. Quantitative evaluation of the relative cell permeability of peptoids and peptides. J. Am. Chem. Soc. 129, 1508–1509 (2007).

    Article  CAS  Google Scholar 

  24. Sako, Y., Goto, Y., Murakami, H. & Suga, H. Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chem. Biol. 3, 241–249 (2008).

    Article  CAS  Google Scholar 

  25. Martinis, S.A. & Schimmel, P. Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine. Proc. Natl. Acad. Sci. USA 89, 65–69 (1992).

    Article  CAS  Google Scholar 

  26. Putz, J. et al. Rapid selection of aminoacyl-tRNAs based on biotinylation of alpha-NH2 group of charged amino acids. Nucleic Acids Res. 25, 1862–1863 (1997).

    Article  CAS  Google Scholar 

  27. Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).

    Article  CAS  Google Scholar 

  28. Hopper, A.K. & Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 17, 162–180 (2003).

    Article  CAS  Google Scholar 

  29. Goto, Y., Katoh, T. & Suga, H. Preparation of materials for flexizyme reactions and genetic code reprogramming. Protoc. Exchange. doi:10.1038/protex.2011.209 (2011).

  30. Olins, P.O., Devine, C.S., Rangwala, S.H. & Kavka, K.S. The T7 phage gene 10 leader Rna, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73, 227–235 (1988).

    Article  CAS  Google Scholar 

  31. Kung, H.F. et al. DNA-directed in vitro synthesis of beta-galactosidase. Studies with purified factors. J. Biol. Chem. 252, 6889–6894 (1977).

    CAS  PubMed  Google Scholar 

  32. Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    Article  CAS  Google Scholar 

  33. Charlton, A. & Zachariou, M. Immobilized metal ion affinity chromatography of histidine-tagged fusion proteins. Methods Mol. Biol. 421, 137–149 (2008).

    CAS  PubMed  Google Scholar 

  34. Block, H. et al. Immobilized-metal affinity chromatography (IMAC): a review. Meth. Enzymol. 463, 439–473 (2009).

    Article  CAS  Google Scholar 

  35. Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  Google Scholar 

  36. Shukla, A. & Majors, R.E. Micropipette tip-based sample preparation for bioanalysis. LCGC Eur. 18, 650 (2005).

    CAS  Google Scholar 

  37. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  38. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  39. Clemons, W.M. Jr. et al. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J. Mol. Biol. 310, 827–843 (2001).

    Article  CAS  Google Scholar 

  40. Baggott, J.E. et al. Cofactor role for 10-formyldihydrofolic acid. Biochem. J. 308 (Part 3): 1031–1036 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Yamagishi for the discussion and proofreading. We thank H. Murakami and T. Kawakami for the contributions to the development of the methods presented in this study. We also thank P.C. Reid and C.J. Hipolito for proofreading. This work was supported by grants from the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (S) (16101007), Specially Promoted Research (21000005), a research and development projects of the Industrial Science and Technology Program in the New Energy and Industrial Technology Development Organization, and the World Class University project of the MEST and the NRF (R31-2008-000-10103-0) to H.S.; and grants from the Japan Society for the Promotion of Science Grants-in-Aid for Young Scientists (B) (22750145) to Y.G. and (B) (22710210) to T.K.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. developed the methods presented in this study. Y.G. and T.K. validated the protocol, wrote the article and prepared the figures. H.S. supervised all the work and prepared the final version of the manuscript.

Corresponding author

Correspondence to Hiroaki Suga.

Ethics declarations

Competing interests

We disclosed a patent related to this technology when this manuscript was submitted. Note that the patent includes some technical advancements to the FIT system that are not yet ready for publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat Protoc 6, 779–790 (2011). https://doi.org/10.1038/nprot.2011.331

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.331

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research