Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers

Abstract

This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1–2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the experimental setup.
Figure 2: Phase-contrast image and Raman spectrum of an individual trapped dormant B. cereus spore.
Figure 3: Phase-contrast and Raman spectral images of multiple trapped dormant B. cereus spores.
Figure 4: Sample container and heating stage designed for temperature control.
Figure 5: Simultaneous recording of Raman spectra, phase-contrast images and fluorescence images of a single optically trapped B. cereus spore germinating at 24 °C with 1 mM L-alanine plus 0.
Figure 6: Germination heterogeneity characterized by time of Trelease.

Similar content being viewed by others

References

  1. Setlow, P. & Johnson, E.A. Spores and their significance. In Food Microbiology: Fundamentals And Frontiers 3rd edn. (eds. Doyle, M.P., Beuchat, L.R. & Montville, T.J.) 35–67, (ASM Press, 2007).

  2. Piggot, P.J. & Hilbert, D.W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579–586 (2004).

    Article  CAS  Google Scholar 

  3. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000).

    Article  CAS  Google Scholar 

  4. Setlow, P. Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. J. Appl. Microbiol. 101, 514–525 (2006).

    Article  CAS  Google Scholar 

  5. Setlow, P. Spore germination. Curr. Opin. Microbiol. 6, 550–556 (2003).

    Article  CAS  Google Scholar 

  6. Moir, A. How do spores germinate? J. Appl. Microbiol. 101, 526–530 (2006).

    Article  CAS  Google Scholar 

  7. Gerhardt, P. & Marquis, R.E. Spore thermoresistance mechanisms. In Regulation of Prokaryotic Development (eds. Smith, I., Slepecky, R.A. & Setlow, P.) 43–63 (American Society for Microbiology, 1989).

  8. Setlow, B., Wahome, P.G. & Setlow, P. Release of small molecules during germination of spores of Bacillus species. J. Bacteriol. 190, 4759–4763 (2008).

    Article  CAS  Google Scholar 

  9. Scott, I.R. & Ellar, D.J. Study of calcium dipicolinate release during bacterial spore germination by using a new, sensitive assay for dipicolinate. J. Bacteriol. 135, 133–137 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheung, H.Y., Cui, J. & Sun, S.Q. Real time monitoring of Bacillus subtilis endospore components by attenuated total reflection Fourier transform infrared spectroscopy during germination. Microbiology 145, 1043–1048 (1999).

    Article  CAS  Google Scholar 

  11. Hindle, A.A. & Hall, E.A.H. Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124, 1599–1604 (1999).

    Article  CAS  Google Scholar 

  12. Zaman, M.S. et al. Imaging and analysis of Bacillus anthracis spore germination. Microsci. Res. Tech. 66, 307–311 (2005).

    Article  Google Scholar 

  13. Plomp, M., Leighton, T.J., Wheeler, K.E., Hill, H.D. & Malkin, A.J. In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc. Natl Acad. Sci. USA 104, 9644–9649 (2007).

    Article  CAS  Google Scholar 

  14. Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

    Article  CAS  Google Scholar 

  15. Hashimoto, T., Frieben, W.R. & Conti, S.F. Germination of single bacterial spores. J. Bacteriol. 98, 1011–1020 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gould, G.W. Germination. In The Bacterial Spore (eds. Gould G.W. & Hurst A.) 397–444 (Academic Press, 1969).

  17. Ragkousi, K., Cowan, A.E., Ross, M.A. & Setlow, P. Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J. Bacteriol. 182, 5556–5562 (2000).

    Article  CAS  Google Scholar 

  18. Laflamme, C., Lavigne S., HoJ. & Duchaine, C. Assessment of bacterial endospore viability with fluorescent dyes. J. Appl. Microbiol. 96, 684–692 (2004).

    Article  CAS  Google Scholar 

  19. Black, E.P et al. Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Appl. Environ. Microbiol. 71, 5879–5887 (2005).

    Article  CAS  Google Scholar 

  20. Welkos, S.L., Cote, C.K., Rea, K.M. & Gibbs, P.H. A microtiter fluorometric assay to detect the germination of Bacillus anthracis spores and the germination inhibitory effects of antibodies. J. Microbiol. Methods 56, 253–265 (2004).

    Article  CAS  Google Scholar 

  21. Mathys, A., Chapman, B., Bull, M., Heinz, V. & Knorr, D. Flow cytometric assessment of Bacillus spore response to high pressure and heat. Innovat. Food Sci. Emerg. Tech. 8, 519–527 (2007).

    Article  Google Scholar 

  22. Evanoff, D.D., Heckel, J., Caldwell, T.P., Christensen, K.A. & Chumanov, G. Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy. J. Am. Chem. Soc. 128, 12618–12619 (2006).

    Article  CAS  Google Scholar 

  23. Daniels, J.K., Caldwell, T.P., Christensen, K.A. & Chumanov, G. Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Anal. Chem. 78, 1724–1729 (2006).

    Article  CAS  Google Scholar 

  24. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  CAS  Google Scholar 

  25. Ashkin, A. & Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  CAS  Google Scholar 

  26. MacDonald, M.P., Spalding, G.C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    Article  CAS  Google Scholar 

  27. Min, T.L. et al. High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat. Methods 6, 831–835 (2009).

    Article  CAS  Google Scholar 

  28. Mehta, A.D., Reif, M., Spudich, J.A., Smith, D.A. & Simmons, R.M. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).

    Article  CAS  Google Scholar 

  29. Xie, C.A., Dinno, M.A. & Li, Y.Q. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt. Lett. 27, 249–251 (2002).

    Article  Google Scholar 

  30. Chan, J.W. et al. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Anal. Chem. 76, 599–603 (2004).

    Article  CAS  Google Scholar 

  31. Huang, S.S. et al. Levels of Ca2+-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J. Bacteriol. 189, 4681–4687 (2007).

    Article  CAS  Google Scholar 

  32. Chen, D., Huang, S.S. & Li, Y.Q. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal. Chem. 78, 2936–6941 (2006).

    Google Scholar 

  33. Peng, L., Chen, D., Setlow, P. & Li, Y.Q. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal. Chem. 81, 4035–4042 (2009).

    Article  CAS  Google Scholar 

  34. Kong, L., Zhang, P., Setlow, P. & Li, Y.Q. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy and optical tweezers. Anal. Chem. 82, 3840–3847 (2010).

    Article  CAS  Google Scholar 

  35. Coote, P.J. et al. The use of confocal scanning laser microscopy (CSLM) to study the germination of individual spores of Bacillus cereus. J. Microbiol. Meth. 21, 193–208 (1995).

    Article  Google Scholar 

  36. Zhang, P., Kong, L., Wang, G., Setlow, P. & Li, Y.Q. Combination of Raman tweezers and quantitative differential interference contrast microscopy for measurement of dynamics and heterogeneity during the germination of individual bacterial spores. J. Biomed. Opt. 15, 056010 (2010).

    Article  Google Scholar 

  37. Kong, L., Zhang, P., Yu, J., Setlow, P. & Li, Y.Q. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species. Anal. Chem. 82, 8717–8724 (2010).

    Article  CAS  Google Scholar 

  38. Zhang, P., Kong, L., Setlow, P. & Li, Y.Q. Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells. Opt. Lett. 35, 3321–3323 (2010).

    Article  CAS  Google Scholar 

  39. Thanbichler, M. & Shapiro, L. Getting organized—how bacterial cells move proteins and DNA. Nat. Rev. Microbiol. 6, 28–40 (2008).

    Article  CAS  Google Scholar 

  40. Clements, M.O. & Moir, A. Role of gerI operon of Bacillus cereus 569 in the response of spores to germinants. J. Bacteriol. 180, 6729–6735 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, P. et al. Factors affecting the variability in time between addition of nutrient germinants and rapid dipicolinic acid release during germination of spores of Bacillus species. J. Bacteriol. 192, 3608–3619 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Army Research Office (Y.-q.L. and P.S.) and by a Multidisciplinary University Research Initiative award from the United States Department of Defense (P.S. and Y.-q.L.).

Author information

Authors and Affiliations

Authors

Contributions

L.K. and Y.-q.L. designed the experimental setup, performed the research, analyzed data and wrote the manuscript. P.Z., G.W. and J.Y. performed the experiments and analyzed data. P.S. provided spore samples, supervised the microbiological work and revised the manuscript.

Corresponding author

Correspondence to Yong-qing Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Code for the computer programs used in this protocol. QSI CCD control_VB code. DAQ control_Matlab code. (RTF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Zhang, P., Wang, G. et al. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat Protoc 6, 625–639 (2011). https://doi.org/10.1038/nprot.2011.307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.307

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing