Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

AAV-mediated gene targeting methods for human cells

Abstract

Gene targeting with adeno-associated virus (AAV) vectors has been demonstrated in multiple human cell types, with targeting frequencies ranging from 10−5 to 10−2 per infected cell. These targeting frequencies are 1–4 logs higher than those obtained by conventional transfection or electroporation approaches. A wide variety of different types of mutations can be introduced into chromosomal loci with high fidelity and without genotoxicity. Here we provide a detailed protocol for gene targeting in human cells with AAV vectors. We describe methods for vector design, stock preparation and titration. Optimized transduction protocols are provided for human pluripotent stem cells, mesenchymal stem cells, fibroblasts and transformed cell lines, as well as a method for identifying targeted clones by Southern blots. This protocol (from vector design through a single round of targeting and screening) can be completed in 10 weeks; each subsequent round of targeting and screening should take an additional 7 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vector design strategies.
Figure 2: Detecting homologous recombination with a Southern blot.

Similar content being viewed by others

References

  1. Deng, C. & Capecchi, M.R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).

    Article  CAS  Google Scholar 

  2. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  Google Scholar 

  3. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  4. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  Google Scholar 

  5. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell. Stem. Cell. 5, 97–110 (2009).

    Article  CAS  Google Scholar 

  6. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  CAS  Google Scholar 

  7. Cathomen, T. & Joung, J.K. Zinc-finger nucleases: the next generation emerges. Mol. Ther. 16, 1200–1207 (2008).

    Article  CAS  Google Scholar 

  8. Maeder, M.L. et al. Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    Article  CAS  Google Scholar 

  9. Inoue, N., Dong, R., Hirata, R.K. & Russell, D.W. Introduction of single base substitutions at homologous chromosomal sequences by adeno-associated virus vectors. Mol. Ther. 3, 526–530 (2001).

    Article  CAS  Google Scholar 

  10. Paiboonsukwong, K. et al. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector. J. Gene. Med. 11, 1012–1019 (2009).

    Article  CAS  Google Scholar 

  11. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    Article  CAS  Google Scholar 

  12. Ericson, K. et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc. Natl Acad. Sci. USA 107, 2598–2603 (2010).

    Article  CAS  Google Scholar 

  13. Cummins, J.M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486 (2004).

  14. Cummins, J.M. et al. X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res. 64, 3006–3008 (2004).

    Article  CAS  Google Scholar 

  15. Chamberlain, J.R. et al. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol. Ther. 16, 187–193 (2008).

    Article  CAS  Google Scholar 

  16. Chamberlain, J.R. et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303, 1198–1201 (2004).

    Article  CAS  Google Scholar 

  17. Khan, I.F. et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol. Ther. 18, 1192–1199 (2010).

    Article  CAS  Google Scholar 

  18. Mitsui, K. et al. Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem. Biophys. Res. Commun. 388, 711–717 (2009).

    Article  CAS  Google Scholar 

  19. Russell, D.W. & Hirata, R.K. Human gene targeting by viral vectors. Nat. Genet. 18, 325–330 (1998).

    Article  CAS  Google Scholar 

  20. Russell, D. & Hirata, R. Human gene targeting favors insertions over deletions. Hum. Gene. Ther. 19, 907–914 (2008).

    Article  CAS  Google Scholar 

  21. Grim, J.E. et al. Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J. Cell. Biol. 181, 913–920 (2008).

    Article  CAS  Google Scholar 

  22. Topaloglu, O., Hurley, P.J., Yildirim, O., Civin, C.I. & Bunz, F. Improved methods for the generation of human gene knockout and knockin cell lines. Nucleic Acids Res. 33, e158 (2005).

    Article  Google Scholar 

  23. Hirata, R., Chamberlain, J., Dong, R. & Russell, D.W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 20, 735–738 (2002).

    Article  CAS  Google Scholar 

  24. Kohli, M., Rago, C., Lengauer, C., Kinzler, K.W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 32, e3 (2004).

    Article  Google Scholar 

  25. Dang, L.H. et al. CDX2 has tumorigenic potential in the human colon cancer cell lines LOVO and SW48. Oncogene 25, 2264–2272 (2006).

    Article  CAS  Google Scholar 

  26. Hurley, P.J., Wilsker, D. & Bunz, F. Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation. Oncogene 26, 2535–2542 (2007).

    Article  CAS  Google Scholar 

  27. Mocciaro, A. et al. Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J. Cell. Biol. 189, 631–639 (2010).

    Article  CAS  Google Scholar 

  28. Wilsker, D., Petermann, E., Helleday, T. & Bunz, F. Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc. Natl. Acad. Sci. USA 105, 20752–20757 (2008).

    Article  CAS  Google Scholar 

  29. Terret, M.E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P.V. Cohesin acetylation speeds the replication fork. Nature 462, 231–234 (2009).

    Article  CAS  Google Scholar 

  30. Maciejowski, J. et al. Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J. Cell. Biol. 190, 89–100 (2010).

    Article  CAS  Google Scholar 

  31. Matsumoto, T. et al. Polo-like kinases mediate cell survival in mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 106, 14542–14546 (2009).

    Article  CAS  Google Scholar 

  32. Petek, L.M., Fleckman, P. & Miller, D.G. Efficient KRT14 targeting and functional characterization of transplanted human keratinocytes for the treatment of epidermolysis bullosa simplex. Mol. Ther. 18, 1624–1632 (2010).

    Article  CAS  Google Scholar 

  33. Cunningham, S.C. et al. Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss. Cancer Res. 66, 5560–5564 (2006).

    Article  CAS  Google Scholar 

  34. Kim, J.S., Bonifant, C., Bunz, F., Lane, W.S. & Waldman, T. Epitope tagging of endogenous genes in diverse human cell lines. Nucleic Acids Res. 36, e127 (2008).

    Article  Google Scholar 

  35. Wang, Z. Epitope tagging of endogenous proteins for genome-wide chromatin immunoprecipitation analysis. Methods Mol. Biol. 567, 87–98 (2009).

    Article  CAS  Google Scholar 

  36. Hirata, R.K. & Russell, D.W. Design and packaging of adeno-associated virus gene targeting vectors. J. Virol. 74, 4612–4620 (2000).

    Article  CAS  Google Scholar 

  37. Trobridge, G., Hirata, R.K. & Russell, D.W. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum. Gene. Ther. 16, 522–526 (2005).

    Article  CAS  Google Scholar 

  38. Sun, X. et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Invest. 118, 1578–1583 (2008).

    Article  CAS  Google Scholar 

  39. Welsh, M.J., Rogers, C.S., Stoltz, D.A., Meyerholz, D.K. & Prather, R.S. Development of a porcine model of cystic fibrosis. Trans. Am. Clin. Climatol. Assoc. 120, 149–162 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Miller, D.G. et al. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J. Virol. 79, 11434–11442 (2005).

    Article  CAS  Google Scholar 

  41. Song, K.Y., Schwartz, F., Maeda, N., Smithies, O. & Kucherlapati, R. Accurate modification of a chromosomal plasmid by homologous recombination in human cells. Proc. Natl. Acad. Sci. USA 84, 6820–6824 (1987).

    Article  CAS  Google Scholar 

  42. Sedivy, J.M. & Sharp, P.A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 227–231 (1989).

    Article  CAS  Google Scholar 

  43. Schwartzberg, P.L., Robertson, E.J. & Goff, S.P. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc. Natl. Acad. Sci. USA 87, 3210–3214 (1990).

    Article  CAS  Google Scholar 

  44. Marques, M.M., Thomson, A.J., McCreath, K.J. & McWhir, J. Conventional gene targeting protocols lead to loss of targeted cells when applied to a silent gene locus in primary fibroblasts. J. Biotechnol. 125, 185–193 (2006).

    Article  CAS  Google Scholar 

  45. Wong, E.A. & Capecchi, M.R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell. Biol. 7, 2294–2295 (1987).

    Article  CAS  Google Scholar 

  46. Liu, X. et al. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J. Virol. 78, 4165–4175 (2004).

    Article  CAS  Google Scholar 

  47. Sauer, B. & Henderson, N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161 (1989).

    Article  CAS  Google Scholar 

  48. Miller, D.G. et al. Gene targeting in vivo by adeno-associated virus vectors. Nat. Biotechnol. 24, 1022–1026 (2006).

    Article  CAS  Google Scholar 

  49. Inoue, N., Hirata, R.K. & Russell, D.W. High-fidelity correction of mutations at multiple chromosomal positions by adeno-associated virus vectors. J. Virol. 73, 7376–7380 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Porteus, M.H., Cathomen, T., Weitzman, M.D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003).

    Article  CAS  Google Scholar 

  51. Gellhaus, K., Cornu, T.I., Heilbronn, R. & Cathomen, T. Fate of recombinant adeno-associated viral vector genomes during DNA double-strand break-induced gene targeting in human cells. Hum. Gene. Ther. 21, 543–553 (2010).

    Article  CAS  Google Scholar 

  52. te Riele, H., Maandag, E.R. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  53. Sedivy, J.M., Vogelstein, B., Liber, H.l., Hendrickson, E.A. & Rosmarin, A. Gene targeting in human cells without isogenic DNA. Science 283, 9 (1999).

    Article  Google Scholar 

  54. Grimm, D., Kern, A., Rittner, K. & Kleinschmidt, J.A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene. Ther. 9, 2745–2760 (1998).

    Article  CAS  Google Scholar 

  55. Rutledge, E.A., Halbert, C.L. & Russell, D.W. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grieger, J.C., Choi, V.W. & Samulski, R.J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).

    Article  CAS  Google Scholar 

  57. Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene. Ther. 6, 973–985 (1999).

    Article  CAS  Google Scholar 

  58. Gao, G., Vandenberghe, L.H. & Wilson, J.M. New recombinant serotypes of AAV vectors. Curr. Gene. Ther. 5, 285–297 (2005).

    Article  CAS  Google Scholar 

  59. Snyder, R.O., Xiao, X. & Samulski, R.J. Production of recombinant adeno-associated viral vectors. In Current Protocols in Human Genetics (ed. Dracopoli, N.) 12.11.11–12.11.20 (John Wiley, 1996).

  60. Inoue, N. & Russell, D.W. Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. J. Virol. 72, 7024–7031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. DuBridge, R.B. et al. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7, 379–387 (1987).

    Article  CAS  Google Scholar 

  62. Tucker, K.L., Wang, Y., Dausman, J. & Jaenisch, R. A transgenic mouse strain expressing four drug-selectable marker genes. Nucleic Acids Res. 25, 3745–3746 (1997).

    Article  CAS  Google Scholar 

  63. Chomczynski, P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201, 134–139 (1992).

    Article  CAS  Google Scholar 

  64. Ware, C.B., Nelson, A.M. & Blau, C.A. Controlled-rate freezing of human ES cells. Biotechniques 38, 879–880, 882–873 (2005).

    Article  CAS  Google Scholar 

  65. Rago, C., Vogelstein, B. & Bunz, F. Genetic knockouts and knockins in human somatic cells. Nat. Protoc. 2, 2734–2746 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants DK55759, HL53750 AR48328 and GM086497 to D.W.R. from the US National Institutes of Health. We thank D.R. Deyle for helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

I.F.K., R.K.H. and D.W.R. wrote the manuscript.

Corresponding author

Correspondence to David W Russell.

Ethics declarations

Competing interests

I.F.K. and R.K.H have no competing financial interests. D.W.R. is on the Scientific Advisory Board of Horizon Discovery Limited.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, I., Hirata, R. & Russell, D. AAV-mediated gene targeting methods for human cells. Nat Protoc 6, 482–501 (2011). https://doi.org/10.1038/nprot.2011.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.301

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing