Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using an adherent cell culture of the mouse subependymal zone to study the behavior of adult neural stem cells on a single-cell level

Abstract

A comprehensive understanding of the cell biology of adult neural stem cells (aNSCs) requires direct observation of aNSC division and lineage progression in the absence of niche-dependent signals. Here we describe a culture preparation of the adult mouse subependymal zone (SEZ), which allows for continuous single-cell tracking of aNSC behavior. The protocol involves the isolation (3 h) and culture of cells from the adult SEZ at low density in the absence of mitogenic growth factors in chemically defined medium and subsequent live imaging using time-lapse video microscopy (5–7 d); these steps are followed by postimaging immunocytochemistry to identify progeny (7 h). This protocol enables the observation of the progression from slow-dividing aNSCs of radial/astroglial identity up to the neuroblast stage, involving asymmetric and symmetric cell divisions of distinct fast-dividing precursors. This culture provides an experimental system for studying instructive or permissive effects of signal molecules on aNSC modes of cell division and lineage progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram illustrating the major steps of the protocol.
Figure 2: Preparation of the adult SEZ.
Figure 3: Prototypical lineage trees observed by single-cell tracking of SEZ cultures.
Figure 4: Clonal analysis using retroviral-mediated transduction.
Figure 5: Examples of asymmetric lineage trees.

Similar content being viewed by others

References

  1. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article  CAS  Google Scholar 

  2. Beckervordersandforth, R. et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7, 744–758 (2010).

    Article  CAS  Google Scholar 

  3. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  4. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 96, 11619–11624 (1999).

    Article  CAS  Google Scholar 

  5. Pastrana, E., Cheng, L.C. & Doetsch, F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl. Acad. Sci. USA 106, 6387–6392 (2009).

    Article  CAS  Google Scholar 

  6. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008).

    Article  CAS  Google Scholar 

  7. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  Google Scholar 

  8. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  9. Reynolds, B.A. & Rietze, R.L. Neural stem cells and neurospheres—re-evaluating the relationship. Nat. Methods 2, 333–336 (2005).

    Article  CAS  Google Scholar 

  10. Rietze, R.L. & Reynolds, B.A. Neural stem cell isolation and characterization. Methods Enzymol. 419, 3–23 (2006).

    Article  CAS  Google Scholar 

  11. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J. & Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  Google Scholar 

  12. Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486–498 (2011).

    Article  CAS  Google Scholar 

  13. Costa, M.R. et al. Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 138, 1057–1068 (2011).

    Article  CAS  Google Scholar 

  14. Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nat. Methods 8, S30–S35 (2011).

    Article  CAS  Google Scholar 

  15. Price, J., Turner, D. & Cepko, C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84, 156–160 (1987).

    Article  CAS  Google Scholar 

  16. Williams, B.P., Read, J. & Price, J. The generation of neurons and oligodendrocytes from a common precursor cell. Neuron 7, 685–693 (1991).

    Article  CAS  Google Scholar 

  17. Lim, D.A. & Alvarez-Buylla, A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. USA 96, 7526–7531 (1999).

    Article  CAS  Google Scholar 

  18. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  Google Scholar 

  19. Brill, M.S. et al. Adult generation of glutamatergic olfactory bulb interneurons. Nat. Neurosci. 12, 1524–1533 (2009).

    Article  CAS  Google Scholar 

  20. Brill, M.S. et al. A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J. Neurosci. 28, 6439–6452 (2008).

    Article  CAS  Google Scholar 

  21. Qian, X., Goderie, S.K., Shen, Q., Stern, J.H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152 (1998).

    CAS  PubMed  Google Scholar 

  22. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  23. Ravin, R. et al. Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680 (2008).

    Article  CAS  Google Scholar 

  24. Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    Article  CAS  Google Scholar 

  25. Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    Article  CAS  Google Scholar 

  26. Westerlund, U. et al. Endoscopically harvested stem cells: a putative method in future autotransplantation. Neurosurgery 57, 779–784; discussion 779–784 (2005).

    Article  Google Scholar 

  27. Moe, M.C. et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128, 2189–2199 (2005).

    Article  Google Scholar 

  28. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  Google Scholar 

  29. Merkle, F.T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  Google Scholar 

  30. Hack, M.A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci. 8, 865–872 (2005).

    Article  CAS  Google Scholar 

  31. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  Google Scholar 

  32. Zheng, W., Nowakowski, R.S. & Vaccarino, F.M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181–196 (2004).

    Article  CAS  Google Scholar 

  33. Cohen, A.R., Gomes, F.L., Roysam, B. & Cayouette, M. Computational prediction of neural progenitor cell fates. Nat. Methods 7, 213–218 (2010).

    Article  CAS  Google Scholar 

  34. Tang, F., Lao, K. & Surani, M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods 8, S6–S11 (2011).

    Article  CAS  Google Scholar 

  35. Hirrlinger, P.G. et al. Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol. Cell Neurosci. 30, 291–303 (2005).

    Article  CAS  Google Scholar 

  36. Couillard-Despres, S. et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21, 1–14 (2005).

    Article  Google Scholar 

  37. Couillard-Despres, S. et al. Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur. J. Neurosci. 24, 1535–1545 (2006).

    Article  Google Scholar 

  38. Eilken, H. et al. Continuous long-term detection of live cell surface markers by 'in culture' antibody staining. Protocol Exchange (2011)doi:10.1038/protex.2011.205.

  39. Bibel, M., Richter, J., Lacroix, E. & Barde, Y.A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2, 1034–1043 (2007).

    Article  CAS  Google Scholar 

  40. Chen, Y. et al. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods 171, 239–247 (2008).

    Article  CAS  Google Scholar 

  41. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  42. Heinrich, C. et al. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat. Protoc. 6, 214–228 (2011).

    Article  CAS  Google Scholar 

  43. Tashiro, A., Zhao, C. & Gage, F.H. Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 1, 3049–3055 (2006).

    Article  CAS  Google Scholar 

  44. Billon, N., Jolicoeur, C. & Raff, M. Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro. Methods Mol. Biol. 330, 15–32 (2006).

    CAS  PubMed  Google Scholar 

  45. Costa, M.R., Bucholz, O., Schroeder, T. & Gotz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19 (Suppl 1): i135–i143 (2009).

    Article  Google Scholar 

  46. Costa, M.R., Wen, G., Lepier, A., Schroeder, T. & Gotz, M. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft to B.B. and M.G. (BE 4182/2-2 and GO 640/9-2) and to T.S. (SCHR 1142/1-2), and from the Bundesministerium für Bildung und Forschung (NewNeurons) and the Bavarian State Ministry of Sciences, Research and the Arts (ForNeuroCell) to B.B. and M.G.

Author information

Authors and Affiliations

Authors

Contributions

F.O. and M.R.C. contributed to protocol design, experimental analysis of the culture preparation by single-cell tracking, postimaging ICC and clonal analysis, and the preparation of the manuscript; T.S.-E. contributed to the culture preparation; T.S. contributed to single-cell tracking by time-lapse video microscopy; M.G. contributed to protocol design and preparation of the manuscript; B.B. developed the culture preparation and contributed to protocol design, experimental analysis and preparation of the manuscript.

Corresponding author

Correspondence to Benedikt Berninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Summary of lineage trees derived from a single live imaging experiment. Each lineage tree was reconstructed from phase contrast image sequences using TTT. Shown are all lineage trees derived from cells which underwent cell division. After imaging, the identity of each cell was determined by post-imaging immunocytochemistry for βIII tubulin (neuronal) and GFAP (astroglial). N, neuron; G, astroglia; ?, marker negative; X, cell death. (PDF 449 kb)

Supplementary Video 1

Tracking options in TTT software. The video shows the three different outcomes labelled (1) cell division, (2) apoptosis (including any kind of cell death) and (3) cell lost (due to formation of cell aggregates as shown in the video or exit from field of view by the tracked cells), as assigned by the investigator during single cell tracking with the support by the TTT software. (AVI 43101 kb)

Supplementary Video 2

Adult neural stem cell lineage tree. The video shows the lineage progression of the aNSC (black arrow) depicted in Fig. 5a,c. The left panel shows the sequence of phase contrast images and the right panel the corresponding development of the lineage trees. Note the generation of both neuronal and astroglial progeny, as indicated by the final image following post-imaging immunocytochemistry. (AVI 89373 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, F., Costa, M., Simon-Ebert, T. et al. Using an adherent cell culture of the mouse subependymal zone to study the behavior of adult neural stem cells on a single-cell level. Nat Protoc 6, 1847–1859 (2011). https://doi.org/10.1038/nprot.2011.404

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.404

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing