Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies

Abstract

Precision-cut tissue slices (PCTS) are viable ex vivo explants of tissue with a reproducible, well defined thickness. They represent a mini-model of the organ under study and contain all cells of the tissue in their natural environment, leaving intercellular and cell-matrix interactions intact, and are therefore highly appropriate for studying multicellular processes. PCTS are mainly used to study the metabolism and toxicity of xenobiotics, but they are suitable for many other purposes. Here we describe the protocols to prepare and incubate rat and human liver and intestinal slices. Slices are prepared from fresh liver by making a cylindrical core using a drill with a hollow bit, from which slices are cut with a specially designed tissue slicer. Intestinal tissue is embedded in cylinders of agarose before slicing. Slices remain viable for 24 h (intestine) and up to 96 h (liver) when incubated in 6- or 12-well plates under 95% O2/5% CO2 atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup of the incubation cabinet.
Figure 2: Preparation and incubation of rat or human liver slices.
Figure 3: Preparation and incubation of rat intestinal slices.
Figure 4: Preparation of human intestinal cores.
Figure 5: Histomorphology of slices.

Similar content being viewed by others

References

  1. Bach, P.H. et al. The use of tissue slices for pharmacotoxicology studies—the report and recommendations of ECVAM workshop 20. Atla-Altern. Lab. Anim. 24, 893–923 (1996).

    Article  Google Scholar 

  2. de Graaf, I.A., Groothuis, G.M.M. & Olinga, P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin. Drug Metab. Toxicol. 3, 879–898 (2007).

    Article  CAS  Google Scholar 

  3. De Kanter, R., Monshouwer, M., Meijer, D.K.F. & Groothuis, G.M.M. Precision-cut organ slices as a tool to study toxicity and metabolism of xenobiotics with special reference to non-hepatic tissues. Curr. Drug Metab. 3, 39–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Olinga, P., Meijer, D.K.F., Slooff, M.J.H. & Groothuis, G.M.M. Liver slices in in vitro pharmacotoxicology with special reference to the use of human liver tissue. Toxicol. In Vitro 12, 77–100 (1998).

    Article  CAS  Google Scholar 

  5. Parrish, A.R., Gandolfi, A.J. & Brendel, K. Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 57, 1887–1901 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Vickers, A.E. & Fisher, R.L. Precision-cut organ slices to investigate target organ injury. Expert Opin. Drug Metab. Toxicol. 1, 687–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Krumdieck, C.L., dos Santos, J.E. & Ho, K.J. A new instrument for the rapid preparation of tissue slices. Anal. Biochem. 104, 118–123 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Price, R.J. et al. Use of precision-cut rat liver slices for studies of xenobiotic metabolism and toxicity: comparison of the Krumdieck and Brendel tissue slicers. Xenobiotica 28, 361–371 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Zimmermann, M. et al. Improved reproducibility in preparing precision-cut liver tissue slices. Cytotechnology 61, 145–152 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Kanter, R. et al. A new technique for preparing precision-cut slices from small intestine and colon for drug biotransformation studies. J. Pharmacol. Toxicol. Methods 51, 65–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Fisher, R.L. et al. The use of human lung slices in toxicology. Hum. Exp. Toxicol. 13, 466–471 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Moreno, L. et al. Pharmacology of airways and vessels in lung slices in situ: role of endogenous dilator hormones. Respir. Res. 7, 111 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stefaniak, M.S., Gandolfi, A.J. & Brendel, K. Adult rat lung in dynamic organ culture: a new tool in pharmacology. Proc. West Pharmacol. Soc. 31, 149–151 (1988).

    CAS  PubMed  Google Scholar 

  14. Fisher, R.L. et al. Comparative metabolism and toxicity of dichlorobenzenes in Sprague–Dawley, Fischer-344 and human liver slices. Hum. Exp. Toxicol. 14, 414–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lerche-Langrand, C. & Toutain, H.J. Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153, 221–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. De Graaf, I.A., Van Meijeren, C.E., Pektas, F. & Koster, H.J. Comparison of in vitro preparations for semi-quantitative prediction of in vivo drug metabolism. Drug Metab. Dispos. 30, 1129–1136 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. De Kanter, R. et al. Prediction of whole-body metabolic clearance of drugs through the combined use of slices from rat liver, lung, kidney, small intestine and colon. Xenobiotica 34, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Vittorelli, A., Gauthier, C., Michoudet, C. & Baverel, G. Metabolic viability and pharmaco-toxicological reactivity of cryopreserved human precision-cut renal cortical slices. Toxicol. In Vitro 18, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Khan, A.A. et al. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur. J. Pharm. Sci. 37, 115–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Martignoni, M. et al. An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR. Chem. Biol. Interact. 151, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. van de Kerkhof, E.G. et al. Innovative methods to study human intestinal drug metabolism in vitro: precision-cut slices compared with Ussing chamber preparations. Drug Metab. Dispos. 34, 1893–1902 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann, A.F. et al. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology 42, 1391–1398 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. James, K., Skibinski, G. & Hoffman, P. A comparison of the performance in vitro of precision cut tissue slices and suspensions of human spleen with special reference to immunoglobulin and cytokine production. Hum. Antibodies 7, 138–150 (1996).

    Article  CAS  Google Scholar 

  24. Gahwiler, B.H. et al. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Pai, K.S. & Ravindranath, V. Protection and potentiation of MPTP-induced toxicity by cytochrome P-450 inhibitors and inducer: in vitro studies with brain slices. Brain Res. 555, 239–244 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Bull, D.A. et al. Improved biochemical preservation of heart slices during cold storage. Int. J. Surg. Investig. 2, 117–123 (2000).

    CAS  PubMed  Google Scholar 

  27. Parrish, A.R. et al. Culturing precision-cut human prostate slices as an in vitro model of prostate pathobiology. Cell Biol. Toxicol. 18, 205–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kern, M.A. et al. Ex vivo analysis of antineoplastic agents in precision-cut tissue slices of human origin: effects of cyclooxygenase-2 inhibition in hepatocellular carcinoma. Liver Int. 26, 604–612 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Parajuli, N. & Doppler, W. Precision-cut slice cultures of tumors from MMTV-neu mice for the study of the ex vivo response to cytokines and cytotoxic drugs. In Vitro Cell Dev. Biol. Anim. 45, 442–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Stoff-Khalili, M.A. et al. Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res. 7, R1141–R1152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 't Hart, N.A. et al. Oxygenation during hypothermic rat liver preservation: an in vitro slice study to demonstrate beneficial or toxic oxygenation effects. Liver Transpl. 11, 1403–1411 (2005).

    Article  PubMed  Google Scholar 

  32. Langdale, L.A., Kajikawa, O., Frevert, C. & Liggitt, H.D. Sustained tolerance to lipopolysaccharide after liver ischemia–reperfusion injury. Shock 19, 553–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S.H., Culberson, C., Korneszczuk, K. & Clemens, M.G. Differential mechanisms of hepatic vascular dysregulation with mild versus moderate ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1219–G1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Olinga, P. et al. The influence of brain death on liver function. Liver Int. 25, 109–116 (2005).

    Article  PubMed  Google Scholar 

  35. Gommans, W.M. et al. Highly efficient and carcinoma-specific adenoviral replication restricted by the EGP-2 promoter. J. Control Release 117, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Rots, M.G. et al. An ex vivo human model system to evaluate specificity of replicating and non-replicating gene therapy agents. J. Gene Med. 8, 35–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kirby, T.O. et al. A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin. Cancer Res. 10, 8697–8703 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann, M. et al. Human precision-cut liver tumor slices as a tumor patient-individual predictive test system for oncolytic measles vaccine viruses. Int. J. Oncol. 34, 1247–1256 (2009).

    CAS  PubMed  Google Scholar 

  39. Berry, M.N. & Friend, D.S. High-yield preparation of isolated rat liver parenchymal cells. A Biochemical and fine structural study. J. Cell. Biol. 48, 506–520 (1969).

    Article  Google Scholar 

  40. Seglen, P.O. Preparation of isolated rat liver cells. Methods Cell Biol. 13, 29–83 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Bojar, H. et al. Preparation of parenchymal and non-parenchymal cells from adult human liver—morphological and biochemical characteristics. J. Clin. Chem. Clin. Biochem. 14, 527–532 (1976).

    CAS  PubMed  Google Scholar 

  42. Dunn, J.C., Tompkins, R.G. & Yarmush, M.L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J. Cell Biol. 116, 1043–1053 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Kienhuis, A.S. et al. A sandwich-cultured rat hepatocyte system with increased metabolic competence evaluated by gene expression profiling. Toxicol. In Vitro 21, 892–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Tuschl, G. et al. Serum-free collagen sandwich cultures of adult rat hepatocytes maintain liver-like properties long term: a valuable model for in vitro toxicity and drug–drug interaction studies. Chem. Biol. Interact. 181, 124–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Arias, I. et al. (eds.) The Liver: Biology and Pathobiology 1216 (Wiley-Blackwell, Chichester, 2010).

  46. Warburg, O. Versuche an überlebendem Karzinomgewebe. Biochemische Z. 142, 317–333 (1923).

    CAS  Google Scholar 

  47. Krebs, H.A. Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkörper. Hoppe-Seyler Z. 217, 190–227 (1933).

    Google Scholar 

  48. Smith, P.F. et al. Precision-cut liver slices: a new in vitro tool in toxicology. In In Vitro Models in Toxicology (ed. McQueen, C.A.) 93–130 (Telford Press, 1989).

  49. Groothuis, G.M.M., Hulstaert, C.E., Kalicharan, D. & Hardonk, M.J. Plasma membrane specialization and intracellular polarity of freshly isolated rat hepatocytes. Eur. J. Cell Biol. 26, 43–51 (1981).

    CAS  PubMed  Google Scholar 

  50. Olinga, P. et al. Effect of human liver source on the functionality of isolated hepatocytes and liver slices. Drug Metab. Dispos. 26, 5–11 (1998).

    CAS  PubMed  Google Scholar 

  51. Vickers, A.E. & Fisher, R.L. Organ slices for the evaluation of human drug toxicity. Chem. Biol. Interact. 150, 87–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Proost, J.H. et al. Prediction of the pharmacokinetics of succinylated human serum albumin in man from in vivo disposition data in animals and in vitro liver slice incubations. Eur. J. Pharm. Sci. 27, 123–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Vickers, A.E. et al. Organ slice viability extended for pathway characterization: an in vitro model to investigate fibrosis. Toxicol. Sci. 82, 534–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Worboys, P.D., Bradbury, A. & Houston, J.B. Kinetics of drug metabolism in rat liver slices. III. Relationship between metabolic clearance and slice uptake rate. Drug Metab. Dispos. 25, 460–467 (1997).

    CAS  PubMed  Google Scholar 

  55. De Graaf, I.A. et al. Empirical validation of a rat in vitro organ slice model as a tool for in vivo clearance prediction. Drug Metab. Dispos. 34, 591–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. van de Kerkhof, E.G., de Graaf, I.A. & Groothuis, G.M.M. In vitro methods to study intestinal drug metabolism. Curr. Drug Metab. 8, 658–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. De Kanter, R. et al. Drug-metabolizing activity of human and rat liver, lung, kidney and intestine slices. Xenobiotica 32, 349–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Khan, A.A. et al. Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver. Biopharm. Drug Dispos. 30, 241–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Khan, A.A., Dragt, B.S., Porte, R.J. & Groothuis, G.M.M. Regulation of VDR expression in rat and human intestine and liver—consequences for CYP3A expression. Toxicol. In Vitro 24, 822–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. van de Kerkhof, E.G., de Graaf, I.A., de Jager, M.H. & Groothuis, G.M.M. Induction of phase I and II drug metabolism in rat small intestine and colon in vitro. Drug Metab. Dispos. 35, 898–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. van de Kerkhof, E.G. et al. Characterization of rat small intestinal and colon precision-cut slices as an in vitro system for drug metabolism and induction studies. Drug Metab. Dispos. 33, 1613–1620 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Olinga, P. et al. Comparison of five incubation systems for rat liver slices using functional and viability parameters. J. Pharmacol. Toxicol. Methods 38, 59–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Brendel, K., Fisher, R.L., Krumdieck, C.L. & Gandolfi, A.J. Precision-cut rat liver slices in dynamic organ culture for structure-toxicity studies. In In Vitro Biological Systems, Vol. 1 (eds. Tyson, C.A. & Frazier, J.M.), 222–230 (Academic Press, San Diego, 1993).

  64. Smith, P.F. et al. Maintenance of adult rat liver slices in dynamic organ culture. In Vitro Cell. Dev. Biol. 22, 706–712 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. Leeman, W.R., Van de Gevel, I. & Rutten, A.A. Cytotoxicity of menadione and aflatoxin B1 in rat liver slices using netwell inserts as a new culture system. Toxicol. In Vitro 9, 291–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. De Kanter, R. et al. A rapid and simple method for cryopreservation of human liver slices. Xenobiotica 28, 225–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Behrsing, H.P., Vickers, A.E. & Tyson, C.A. Extended rat liver slice survival and stability monitored using clinical biomarkers. Biochem. Biophys. Res. Commun. 312, 209–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Catania, J.R., McGarrigle, B.P., Rittenhouse-Olson, K. & Olson, J.R. Induction of CYP2B and CYP2E1 in precision-cut rat liver slices cultured in defined medium. Toxicol. In Vitro 21, 109–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Drahushuk, A.T. et al. Time- and concentration-dependent induction of CYP1A1 and CYP1A2 in precision-cut rat liver slices incubated in dynamic organ culture in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 155, 127–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Klassen, L.W. et al. An in vitro method of alcoholic liver injury using precision-cut liver slices from rats. Biochem. Pharmacol. 76, 426–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van Midwoud, P.M., Groothuis, G.M.M., Merema, M.T. & Verpoorte, E. Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol. Bioeng. 105, 184–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Schumacher, K. et al. Perfusion culture improves the maintenance of cultured liver tissue slices. Tissue Eng. 13, 197–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Goethals, F. et al. Adult rat liver slices as a model for studying the hepatotoxicity of vincaalkaloids. Toxic. In Vitro 4, 435–438 (1990).

    Article  CAS  Google Scholar 

  74. Vickers, A.E. et al. Cyclosporin A metabolism in human liver, kidney, and intestine slices. Comparison to rat and dog slices and human cell lines. Drug Metab. Dispos. 20, 802–809 (1992).

    CAS  PubMed  Google Scholar 

  75. Wang, S. et al. Bovine liver slices combined with an androgen transcriptional activation assay: an in-vitro model to study the metabolism and bioactivity of steroids. Anal. Bioanal. Chem. 397, 631–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lupp, A., Glöckner, R., Etzrodt, J. & Müller, D. Precision-cut liver slices from rats of different ages: basal cytochrome P450-dependent monooxygenase activities and inducibility. Anal. Bioanal. Chem. 392, 1173–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Palamanda, J.R. et al. Evaluation of CYP1A1 and CYP2B1/2 m-RNA induction in rat liver slices using the NanoString technology: a novel tool for drug discovery lead optimization. Drug Metab. Lett. 3, 171–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Pushparajah, D.S. et al. Up-regulation of the glutathione S-transferase system in human liver by polycyclic aromatic hydrocarbons; comparison with rat liver and lung. Mutagenesis 23, 299–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Pushparajah, D.S. et al. Differential response of human and rat epoxide hydrolase to polycyclic aromatic hydrocarbon exposure: studies using precision-cut tissue slices. Mutat. Res. 640, 153–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Olinga, P. et al. The applicability of rat and human liver slices to the study of mechanisms of hepatic drug uptake. J. Pharmacol. Toxicol. Methods 45, 55–63 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Beljaars, L. et al. Albumin modified with mannose 6-phosphate: a potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells. Hepatology 29, 1486–1493 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Beljaars, L. et al. Characteristics of the hepatic stellate cell-selective carrier mannose 6-phosphate modified albumin (M6P(28)-HSA). Liver 21, 320–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Melgert, B.N. et al. Dexamethasone coupled to albumin is selectively taken up by rat nonparenchymal liver cells and attenuates LPS-induced activation of hepatic cells. J. Hepatol. 32, 603–611 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Olinga, P. et al. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur. J. Pharm. Sci. 33, 380–389 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. van de Kerkhof, E.G., de Graaf, I.A., Ungell, A.L. & Groothuis, G.M.M. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro. Drug Metab. Dispos. 36, 604–613 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Elferink, M.G. et al. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity. Toxicol. Appl. Pharmacol. 229, 300–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Elferink, M.G. et al. LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1008–G1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Hagens, W.I. et al. Gliotoxin non-selectively induces apoptosis in fibrotic and normal livers. Liver Int. 26, 232–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Staal, Y.C. et al. Interactions between polycyclic aromatic hydrocarbons in binary mixtures: effects on gene expression and DNA adduct formation in precision-cut rat liver slices. Mutagenesis 23, 491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Plazar, J. et al. Detection of xenobiotic-induced DNA damage by the comet assay applied to human and rat precision-cut liver slices. Toxicol. In Vitro 21, 1134–1142 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Plazar, J., Filipic, M. & Groothuis, G.M.M. Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicol. In Vitro 22, 318–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Yue, J. et al. Fast evaluation of oxidative DNA damage by liquid chromatography-electrospray tandem mass spectrometry coupled with precision-cut rat liver slices. Biomed. Environ. Sci. 20, 386–391 (2007).

    CAS  PubMed  Google Scholar 

  93. van de Bovenkamp, M., Groothuis, G.M.M., Meijer, D.K.F. & Olinga, P. Precision-cut fibrotic rat liver slices as a new model to test the effects of anti-fibrotic drugs in vitro. J. Hepatol. 45, 696–703 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. van de Bovenkamp, M., Groothuis, G.M.M., Meijer, D.K.F. & Olinga, P. Liver slices as a model to study fibrogenesis and test the effects of anti-fibrotic drugs on fibrogenic cells in human liver. Toxicol. In Vitro 22, 771–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. van de Bovenkamp, M. et al. Human liver slices as an in vitro model to study toxicity-induced hepatic stellate cell activation in a multicellular milieu. Chem. Biol. Interact. 162, 62–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Clouzeau-Girard, H. et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab. Invest. 86, 275–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Guyot, C. et al. Fibrogenic cell fate during fibrotic tissue remodelling observed in rat and human cultured liver slices. J. Hepatol. 46, 142–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Olinga, P. & Groothuis, G.M.M. Use of human tissue slices in drug targeting research. In Drug Targeting, Vol. 12 (eds. Molema, G. & Meijer, D.K.F.), 381 (Wiley-VCH, Weinheim, 2001).

  99. Guo, Y., Wang, H. & Zhang, C. Establishment of rat precision-cut fibrotic liver slice technique and its application in verapamil metabolism. Clin. Exp. Pharmacol. Physiol. 34, 406–413 (2007).

    Article  PubMed  Google Scholar 

  100. Olinga, P. et al. Effect of cold and warm ischaemia on drug metabolism in isolated hepatocytes and slices from human and monkey liver. Xenobiotica 28, 349–360 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. De Graaf, I.A. et al. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology 54, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Glockner, R., Rost, M., Pissowotzki, K. & Muller, D. Monooxygenation, conjugation and other functions in cryopreserved rat liver slices until 24 h after thawing. Toxicology 161, 103–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Fisher, R.L. et al. Cold- and cryopreservation of human liver and kidney slices. Cryobiology 30, 250–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. De Graaf, I.A. & Koster, H.J. Cryopreservation of precision-cut tissue slices for application in drug metabolism research. Toxicol. In Vitro 17, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. De Kanter, R. et al. A simple method for cryopreservation of liver slices from man and other species. In Animal Alternatives, Welfare and Ethics. Developments in Animal and Veterinary Sciences, Vol. 27 (eds. Van Zutphen, L.F.M. & Balls, M.), 851–856 (Elsevier, Amsterdam, 1997).

  106. Olinga, P. et al. Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J. Hepatol. 35, 187–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Fisher, R.L., Gandolfi, A.J. & Brendel, K. Human liver quality is a dominant factor in the outcome of in vitro studies. Cell Biol. Toxicol. 17, 179–189 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The development of these protocols has been supported by grants from ZonMw, Technology Foundation STW, Organon NV (now MSD); Solvay Pharmaceuticals (now Abbott Healthcare) and Yamanouchi Europe (now Astellas Pharma Inc.). We acknowledge M. van de Bovenkamp, P.M. van Midwoud, A.L. Draaisma, I.H. van Veen-Hof, M.G.L. Elferink, A.A. Khan, J. Plazar, M.G. Rots, D.K.F. Meijer, R.J. Porte, M.J.H. Slooff, K.P. de Jong, V.B. Nieuwenhuijs and R.J. Ploeg for their valuable contributions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this article. P.O., M.T.M., I.A.M.d.G. and G.M.M.G. developed the precision-cut liver slice technique. R.d.K., E.G.v.d.K., I.A.M.d.G., M.H.d.J. and G.M.M.G. developed the precision-cut intestinal slice technique.

Corresponding author

Correspondence to Inge A M de Graaf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Graaf, I., Olinga, P., de Jager, M. et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc 5, 1540–1551 (2010). https://doi.org/10.1038/nprot.2010.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing