Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function

Abstract

Given the ever-increasing number of species for which full-genome sequencing has been realized, there is a rising burden for gene functional annotation. In this study, we provide a detailed protocol that combines co-response gene analysis (using target genes of known function to allow the identification of nonannotated genes likely to be involved in a certain metabolic process) with the identification of target compounds through metabolomics. Strategies exist for applying this information to populations generated by both forward and reverse genetics approaches, although none of these are facile. This approach can also be used as a tool to identify unknown mass-spectral peaks representing new or unusual secondary metabolites, which is currently the major challenge of this analytical research field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the experimental design of metabolomics-based gene annotation.
Figure 2: A detailed checklist for experimental design for the identification of transcription factor function.
Figure 3: Workflow for peak annotation.
Figure 4: Example coregulation network analysis of the shikimate and phenolic pathways using coexpression database calculated from publicly available microarray data.
Figure 5: An overview of the experimental and bioinformatic-based procedure for pathway prediction.
Figure 6: Timeline for the protocol.
Figure 7: Identification of metabolite quantitative trait loci (QTL) as a means of gene annotation.
Figure 8: An example of an anticipated result of flavonoid profiling of Arabidopsis accessions (Col-0, La-er and Ms-0) for finding new flavonoid glycosyltransferases.

Similar content being viewed by others

References

  1. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nat. Biotech. 18, 1157–1161 (2000).

    Article  CAS  Google Scholar 

  2. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauter, H., Lauer, M. & Fritsch, H. Metabolite profiling of plants—a new diagnostic technique. Abstr. Pap. Am. Chem. Soc. 195, 129 (1988).

    Google Scholar 

  4. Meyer, R.C. et al. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104, 4759–4764 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Semel, Y. et al. Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics 3, 289–295 (2007).

    Article  CAS  Google Scholar 

  6. Carmo-Silva, A.E. et al. Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses. Phytochemistry 70, 664–671 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Scherling, C., Ulrich, K., Ewald, D. & Weckwerth, W. A metabolic signature of the beneficial interaction of the endophyte paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol. Plant Microbe Interact. 22, 1032–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Widodo et al. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot. 60, 4089–4103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholson, J.K. & Wilson, I.D. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2, 668–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Griffin, J.L. & Nicholls, A.W. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 7, 1095–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Catchpole, G.S. et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. USA 102, 14458–14462 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, T. & Wang, X. Large-scale profiling of the Arabidopsis transcriptome. Plant Physiol. 124, 1472–1476 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El-Lithy, M.E. et al. Altered photosynthetic performance of a natural Arabidopsis accession is associated with atrazine resistance. J. Exp. Bot. 56, 1625–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hirai, M.Y. et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101, 10205–10210 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hirai, M.Y. et al. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem. 280, 25590–25595 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Tschoep, H. et al. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ. 32, 300–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Fukushima, A. et al. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc. Natl. Acad. Sci. USA 106, 7251–7256 (2009).

    Article  PubMed  Google Scholar 

  18. Hirai, M.Y. et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. USA 104, 6478–6483 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Tohge, T. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing a MYB transcription factor. Plant J. 42, 218–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Tohge, T., Yonekura-Sakakibara, K., Niida, R., Watanabe-Takahashi, A. & Saito, K. Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl. Chem. 79, 811–823 (2007).

    Article  CAS  Google Scholar 

  21. Yonekura-Sakakibara, K., Tohge, T., Niida, R. & Saito, K. Identification of a flavonol 7-O-rhamnosyltranserase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression and reverse genetics. J. Biol. Chem. 282, 14932–14941 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Yonekura-Sakakibara, K. et al. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20, 2160–2176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, J. et al. Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J. 50, 678–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Stracke, R. et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okazaki, Y. et al. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21, 892–909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aharoni, A. et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12, 647–661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goossens, A. Functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Natl. Acad. Sci. USA 100, 8595–8600 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Achnine, L. et al. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J. 41, 875–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Rischer, H. et al. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA 103, 5614–5619 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Yamazaki, M. et al. Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J. 275, 3494–3502 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Fiehn, O. Metabolomics—the link between genotype and phenotype. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Yonekura-Sakakibara, K. & Saito, K. Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep. 26, 1466–1487 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. D'Auria, J.C. & Gershenzon, J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8, 308–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fernie, A.R. The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry 68, 2861–2880 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. & Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136, 2621–2632 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thimm, O. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Usadel, B. et al. Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138, 1195–1204 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tokimatsu, T. et al. KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol. 138, 1289–1300 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kusano, M. et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J. Chromatogr. B 855, 71–79 (2007).

    Article  CAS  Google Scholar 

  40. Schauer, N., Zamir, D. & Fernie, A.R. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Harrigan, G.G. et al. Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J. Agric. Food Chem. 55, 6169–6176 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Keurentjes, J.J. et al. The genetics of plant metabolism. Nat. Genet. 38, 842–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lisec, J. et al. Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J. 53, 960–972 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rowe, H.C., Hansen, B.G., Halkier, B.A. & Kliebenstein, D.J. Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20, 1199–1216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dixon, R.A. & Strack, D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 62, 815–816 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, J. & Buckler, E.S. Screening for wound-induced oxylipins in Arabidopsis thaliana by differential HPLC-APCI/MS profiling of crude leaf extracts and subsequent characterisation by capillary-scale NMR. Phytochem. Anal. 19, 198–205 (2008).

    Article  CAS  Google Scholar 

  47. Giavalisco, P. et al. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Anal. Chem. 80, 9417–9425 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Giavalisco, P., Köhl, K., Hummel, J., Seiwert, B. & Willmitzer, L. 13C Isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal. Chem. 81, 6546–6551 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Iijima, Y. et al. Metabolite annotations based on the integration of mass spectral information. Plant J. 54, 949–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tohge, T. & Fernie, A.R. Web-based resources for mass-spectrometry-based metabolomics: a user's guide. Phytochemistry 70, 450–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Duran, A.L., Yang, J., Wang, L. & Sumner, L.W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X. & Sumner, L.W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Monton, M.R. & Soga, T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J. Chromatogr. A 1168, 237–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Böttcher, C. et al. Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol. 147, 2107–2120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuda, F. et al. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J. 57, 555–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martzen, M.R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Innovation—metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Albinsky, D. et al. Metabolomic screening applied to rice FOX arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Mol. Plant 3, 125–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Gibon, Y. et al. Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J. 39, 847–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ishizaki, K. et al. The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17, 2587–2600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Urbanczyk-Wochniak, E. et al. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 10, 989–993 (2003).

    Article  CAS  Google Scholar 

  64. Hannah, M.A. et al. Combined transcript and metabolite profiling of Arabidopsis thaliana grown under widely variant growth conditions facilitates the identification of novel metabolite mediated regulation of gene expression. Plant Physiol

  65. Mehrtens, F., Kranz, H., Bednarek, P. & Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138, 1083–1096 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker, A.R. et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337–1350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nesi, N. et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12, 1863–1878 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hiratsu, K., Matsui, K., Koyama, T. & Ohme-Takagi, M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cone, K.C., Cocciolone, S.M., Burr, F.A. & Burr, B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5, 1795–1805 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cone, K.C. et al. Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. Plant Cell 5, 1807–1816 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Vetten, N., Quattrocchio, F., Mol, J. & Koes, R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 11, 1422–1434 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Peel, G.J., Pang, Y., Modolo, L.V. & Dixon, R.A. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J. 59, 136–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Czemmel, S. et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 151, 1513–1530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walker, A.R. et al. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49, 772–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Bogs, J. et al. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143, 1347–1361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, J., Lee, C., Zhong, R. & Ye, Z.H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21, 248–266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Celenza, J.L. et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137, 253–262 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C. & Flügge, U.I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Gigolashvili, T., Engqvist, M., Yatusevich, R., Müller, C. & Flügge, U.I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177, 627–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. van der Fits, L. & Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kato, N. et al. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol. 48, 8–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Pauw, B. et al. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J. Biol. Chem. 279, 52940–52948 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Kitamura, S., Shikazono, N. & Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37, 104–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Wormit, A. et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18, 3476–3490 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Persson, S. et al. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 15566–15571 (2007).

    Article  PubMed  Google Scholar 

  88. Palmieri, L. et al. Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter from Arabidopsis. Plant Physiol. 148, 1797–1808 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muñoz-Bertomeu, J. et al. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol. 151, 541–58 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fridman, E., Carrari, F., Liu, Y.S., Fernie, A.R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Palmieri, F. et al. Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J. Biol. Chem. 284, 31249–31259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L. & Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1, 387–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. De Vos, R.C., Moco, S., Lommen, A., Keurentjes, J.J., Bino, R.J. & Hall, R.D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Kruger, N.J., Troncoso-Ponce, M.A. & Ratcliffe, R.G. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 3, 1001–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Roessner, U. et al. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23, 131–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Lytovchenko, A. et al. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. Plant Methods 5, 4 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roessner-Tunali, U. et al. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133, 84–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jenkins, H. et al. A proposed framework for the description of plant metabolomics experiments and their results. Nat. Biotechnol. 22, 1601–1606 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Fiehn, O. Metabolite profiling in Arabidopsis. Methods Mol. Biol. 323, 439–447 (2006).

    CAS  PubMed  Google Scholar 

  100. Fiehn, O. et al. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 53, 691–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Tieman, D.M. et al. Identification of loci affecting flavour volatile emissions in tomato fruits. J. Exp. Bot. 57, 887–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Moerkercke, A.V., Schauvinhold, I., Pichersky, E., Haring, M.A. & Schuurink, R.C. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60, 292–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Grennan, A.K. Genevestigator: facilitating web-based expression analysis. Plant Physiol. 141, 1164–1166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Usadel, B. et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32, 1633–1651 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Benning, C. & Stitt, M. Physiology and metabolism reacting to the full complexity of metabolic pathways in a postgenomic era. Curr. Opin. Plant Biol. 7, 231–234 (2004).

    Article  CAS  Google Scholar 

  106. Sweetlove, L.J. & Fernie, A.R. Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol. 168, 9–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Sweetlove, L.J., Fell, D. & Fernie, A.R. Getting to grips with the plant metabolic network. Biochem J. 409, 27–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. von Roepenack-Lahay, eE. et al. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134, 548–559 (2004).

    Article  CAS  Google Scholar 

  109. Roessner-Tunali, U. et al. Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in (13)C labelled isotopes. Plant J. 39, 668–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Benton, H.P., Wong, D.M., Trauger, S.A. & Siuzdak, G. XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal. Chem. 80, 6382–6389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fiehn, O., Wohlgemuth, G. & Scholz, M. Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. Proc. Lect. Notes Bioinform. 3615, 224–239 (2005).

    Google Scholar 

  113. Katajamaa, M. & Oresic, M. Processing software for differential analysis of LC/MS profile data. BMC Bioinform. 6, 179.1–179.12 (2005).

    Article  CAS  Google Scholar 

  114. Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24, 732–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Akiyama, K. et al. PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biol. 8, 39–45 (2008).

    Google Scholar 

  116. Batagelj, V. & Mrvar, A. Pajek—program for large network analysis. Connections 212, 47–57 (1998).

    Google Scholar 

  117. Wei, H. et al. Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol. 142, 762–774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aoki, K., Ogata, Y. & Shibata, D. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 48, 381–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Saito, K., Hirai, M.Y. & Yonekura-Sakakibara, K. Decoding genes with coexpression networks and metabolomics—'majority report by precogs'. Trends Plant Sci. 13, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Brady, S.M. & Provart, N.J. Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21, 1034–1051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schauer, N. et al. Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20, 509–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schauer, N. et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotech. 24, 447–454 (2006).

    Article  CAS  Google Scholar 

  124. Nakabayashi, R. et al. Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70, 1017–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Shinbo, Y. et al. KNApSAcK: a comprehensive species-metabolite relationship database. Biotechnol. Agr. Forest 57, 166–181 (2006).

    Google Scholar 

  126. Horai, H., Arita, M. & Nishioka, T. Comparison of ESI-MS spectra in MassBank database. Proc. Int. Conf. Biomed. Eng. Inform. 2, 853–857 (2008).

    Google Scholar 

  127. Toufighi, K., Brady, S.M., Austin, R., Ly, E. & Provart, N.J. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J. 43, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Fernie, A.R. & Schauer, N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 25, 39–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Fernie, A.R., Tadmor, Y. & Zamir, D. Natural genetic variation for improving crop quality. Curr. Opinion Plant Biol. 9, 196–202 (2006).

    Article  Google Scholar 

  130. Zamir, D. Plant breeders go back to nature. Nat. Genet. 40, 269–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Schaffer, A.A. & Petreikov, M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol. 113, 739–746 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ogata, Y., Suzuki, H. & Shibata, D. A database for poplar gene co-expression analysis for systematic understanding of biological processes, including stress responses. J. Wood Sci. 55, 395–400 (2009).

    Article  CAS  Google Scholar 

  133. Cline, M.S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith, C.A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Kopka, J. et al. GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21, 1635–1638 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Overy, D.P. et al. Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-MS metabolite fingerprints. Nat. Protoc. 3, 471–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Lui, L., Vikram, A., Hamzehzarghani, H. & Kushalappa, A.C. Discrimination of three fungal diseases of potato tubers based on volatile metabolic profiles developed using GC/MS. Potato Res. 48, 1–2 (2005).

    Article  Google Scholar 

  138. Moco, S. et al. A liquid chromatography mass spectrometry based metabolome database for tomato. Plant Physiol. 141, 1205–1218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Manfield, I.W. et al. Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res. 34, W504–W509 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Obayashi, T. et al. Distinctive features of plant organs characterized by global analysis of gene expression in Arabidopsis. DNA Res. 11, 11–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Steinhauser, D., Usadel, B., Luedemann, A., Thimm, O. & Kopka, J. CSB.DB: a comprehensive systems-biology database. Bioinformatics 20, 3647–3651 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Ogata, Y. et al. KAGIANA: an excel-based tool for retrieving summary information on Arabidopsis genes. Plant Cell Physiol. 50, 173–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Srinivasasainagendra, V., Page, G.P., Mehta, T., Coulibaly, I. & Loraine, A.E. CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol. 147, 1004–1016 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mutwil, M., Obro, J., Willats, W.G. & Persson, S. GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res. 36, 320–326 (2008).

    Article  CAS  Google Scholar 

  145. Obayashi, T., Hayashi, S., Saeki, M., Ohta, H. & Kinoshita, K. ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 37, D987–D991 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, T.H. et al. RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol. 151, 16–33 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jung, K.H. et al. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 3, e3337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goda, H. et al. The AtGenExpress hormone- and chemical-treatment data set: experimental design, data evaluation, model data analysis, and data access. Plant J. 130, 1319–1334 (2008).

    Google Scholar 

  149. Kilian, J. et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Siobhan, M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    Article  CAS  Google Scholar 

  151. Yazaki, J., Kishimoto, N., Ishikawa, M., Endo, D., Kojima, K. & Kikuchi, S. The Rice Expression Database (RED): gateway to rice functional genomics. Trends Plant Sci. 12, 563–564 (2002).

    Article  Google Scholar 

  152. Doddapaneni, H., Lin, H., Walker, M.A., Yao, J. & Civerolo, E.L. VitisExpDB: a database resource for grape functional genomics. BMC Plant Biol. 8, 23 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Fei, Z., Tang, X., Alba, R. & Giovannoni, J. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res. 34, D766–D770 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E. & Dickerson, J.A. BerleyBase/PLEXdb. Methods Mol. Biol. 406, 347–363 (2007).

    CAS  PubMed  Google Scholar 

  155. Freeman, T.C. et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput. Biol. 3, 2032–2042 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Theocharidis, A., van Dongen, S., Enright, A.J. & Freeman, T.C. Network visualization and analysis of gene expression data using BioLayout Express(3D). Nat. Protoc. 4, 1535–1550 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Lisec, J. et al. Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Plant J. 59, 777–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Yu, J. & Buckler, E.S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Galili, G., Galili, S., Lewinsohn, E. & Tadmor, Y. Genetic, molecular and genomic approaches to improve the value of plant foods and feeds. Crit. Rev. Plant Sci. 21, 167–204 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Saito, M. Hirai-Yokota and M. Arita of RIKEN PSC and B. Usadel of MPIMP for useful discussions. T.T. was supported by a fellowship from the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.T. and A.R.F. wrote the manuscript.

Corresponding author

Correspondence to Alisdair R Fernie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohge, T., Fernie, A. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 5, 1210–1227 (2010). https://doi.org/10.1038/nprot.2010.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.82

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research