Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver

Abstract

Donor organ shortage is still the major obstacle for the clinical application of hepatocyte transplantation in the treatment of liver diseases. However, generation of hepatocyte-like cells from mesenchymal stem cells (MSCs) has become a real alternative to the isolation of primary hepatocytes. MSCs are extracted from the tissue by collagenase digestion and enriched by their capacity to grow on plastic surfaces. Enriched cells display distinct mesenchymal surface markers and are capable of multiple lineage differentiation. In the presence of specific growth conditions, the cells adopt functional features of differentiated hepatocytes. After orthotopic transplantation, differentiated human stem cells engraft in the host liver parenchyma of immunocompromized mice. This protocol describes the in vitro differentiation of stem cells from human bone marrow and their transplantation into livers of immunodeficient mice. The cell culture procedures take about 4–5 weeks, and cells engrafted in the mouse liver may be detected 2–3 months after transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of hepatocyte-specific functions in differentiated MSCs.
Figure 2: Characterization of hepatocyte-specific marker protein expression in differentiated MSCs using western blots.
Figure 3: Cell transplantation into the mouse liver.
Figure 4: Immunohistochemical detection of human hepatocyte-like cells in the mouse liver 10 weeks after transplantation.

Similar content being viewed by others

References

  1. Smets, F., Najimi, M. & Sokal, E.M. Cell transplantation in the treatment of liver diseases. Pediatr. Transplant. 12, 6–13 (2008).

    Article  CAS  Google Scholar 

  2. Alison, M.R., Islam, S. & Lim, S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J. Pathol. 217, 282–298 (2009).

    Article  CAS  Google Scholar 

  3. Ito, M., Nagata, H., Miyakawa, S. & Fox, I.J. Review of hepatocyte transplantation. J. Hepatobiliary Pancreat Surg. 16, 97–100 (2009).

    Article  Google Scholar 

  4. Oertel, M. & Shafritz, D.A. Stem cells, cell transplantation and liver repopulation. Biochim. Biophys. Acta. 1782, 61–74 (2008).

    Article  CAS  Google Scholar 

  5. Puppi, J. & Dhawan, A. Human hepatocyte transplantation overview. Methods Mol. Biol. 481, 1–16 (2009).

    Article  CAS  Google Scholar 

  6. Fox, I.J. & Roy-Chowdhury, J. Hepatocyte transplantation. J. Hepatol. 40, 878–886 (2004).

    Article  CAS  Google Scholar 

  7. Weber, A., Groyer-Picard, M.-T., Franco, D. & Dagher, I. Hepatocyte transplantation in animal models. Liver Transpl. 15, 7–14 (2009).

    Article  Google Scholar 

  8. Shafritz, D.A., Oertel, M., Menthena, A., Nierhoff, D. & Dabeva, M.D. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43, S89–S98 (2006).

    Article  CAS  Google Scholar 

  9. Seppen, J., Filali, E.E. & Elferink, R.O. Small animal models of hepatocyte transplantation. Methods Mol. Biol. 481, 75–82 (2009).

    Article  CAS  Google Scholar 

  10. Laconi, S. et al. Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with Retrorsine. Am. J. Pathol. 158, 771–777 (2001).

    Article  CAS  Google Scholar 

  11. Laconi, E. et al. Long-term, near-total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am. J. Pathol. 153, 319–329 (1998).

    Article  CAS  Google Scholar 

  12. Vassilopoulos, G.P., Wang, R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  Google Scholar 

  13. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  Google Scholar 

  14. Willenbring, H. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 10, 744–748 (2004).

    Article  CAS  Google Scholar 

  15. Phinney, D.G. & Prockop, D.J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair current views. Stem Cells 25, 2896–2902 (2007).

    Article  Google Scholar 

  16. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  17. Liu, Z.-J., Zhuge, Y. & Velazquez, O.C. Trafficking and differentiation of mesenchymal stem cells. J. Cell. Biochem. 106, 984–991 (2009).

    Article  CAS  Google Scholar 

  18. Kern, S., Eichler, H., Stoeve, J., Kluter, H. & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 1294–1301 (2006).

    Article  CAS  Google Scholar 

  19. Collas, P., Noer, A. & Timoskainen, S. Programming the genome in embryonic and somatic stem cells. J. Cell. Mol. Med. 11, 602–620 (2007).

    Article  CAS  Google Scholar 

  20. Wagner, W. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416 (2005).

    Article  CAS  Google Scholar 

  21. Izadpanah, R. et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell. Biochem. 99, 1285–1297 (2006).

    Article  CAS  Google Scholar 

  22. Chateauvieux, S. et al. Molecular profile of mouse stromal mesenchymal stem cells. Physiol. Genomics 29, 128–138 (2007).

    Article  CAS  Google Scholar 

  23. Etheridge, S.L., Spencer, G.J., Heath, D.J. & Genever, P.G. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22, 849–860 (2004).

    Article  CAS  Google Scholar 

  24. Lange, C. et al. Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant. Proc. 37, 276–279 (2005).

    Article  CAS  Google Scholar 

  25. Wang, P.P. et al. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction. Biochem. Biophys. Res. Commun. 320, 712–716 (2004).

    Article  CAS  Google Scholar 

  26. Schwartz, R.E. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302 (2002).

    Article  CAS  Google Scholar 

  27. Taléns-Visconti, R. et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J. Gastroenterol. 12, 5834–5845 (2006).

    Article  Google Scholar 

  28. Lee, K.D. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275–1284 (2004).

    Article  CAS  Google Scholar 

  29. Hong, S.H. et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem. Biophys. Res. Commun. 330, 1153–1161 (2005).

    Article  CAS  Google Scholar 

  30. Seo, M.J., Suh, S.Y., Bae, Y.C. & Jung, J.S. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 328, 258–264 (2005).

    Article  CAS  Google Scholar 

  31. Banas, A. et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46, 219–228 (2007).

    Article  CAS  Google Scholar 

  32. Aurich, I. et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56, 405–415 (2007).

    Article  CAS  Google Scholar 

  33. Banas, A. et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J. Gastroenterol. Hepatol. 24, 70–77 (2009).

    Article  CAS  Google Scholar 

  34. Sgodda, M. et al. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp. Cell. Res. 313, 2875–2886 (2007).

    Article  CAS  Google Scholar 

  35. Aurich, H. et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58, 570–581 (2009).

    Article  CAS  Google Scholar 

  36. Kuo, T.K. et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134, 2111–2121 (2008).

    Article  Google Scholar 

  37. van Poll, D. et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47, 1634–1643 (2008).

    Article  CAS  Google Scholar 

  38. Parekkadan, B. et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2, e941 (2007).

    Article  Google Scholar 

  39. Soleimani, M. & Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102–106 (2009).

    Article  CAS  Google Scholar 

  40. Christ, B., Brückner, S. & Stock, P. Hepatic transplantation of mesenchymal stem cells in rodent animal models. Methods Mol. Biol. (in the press).

  41. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  Google Scholar 

  42. Runge, D. et al. Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions. Biochem. Biophys. Res. Commun. 269, 46–53 (2000).

    Article  CAS  Google Scholar 

  43. Aurich, H. et al. Functional characterization of serum-free cultured rat hepatocytes for downstream transplantation applications. Cell Transplant. 14, 497–506 (2005).

    Article  Google Scholar 

  44. Koenig, S. et al. Zonal expression of hepatocytic marker enzymes during liver repopulation. Histochem. Cell. Biol. 128, 105–114 (2007).

    Article  CAS  Google Scholar 

  45. Walldorf, J., Haftendorn, R., Aurich, H., Fleig, W.E. & Christ, B. Potential improvement of liver repopulation by transplanted mouse hepatocytes in propranolol pre-treated mice after partial hepatectomy. J. Hepatol. 40, 105 (2004).

    Article  Google Scholar 

  46. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  47. Sheehan, D. & Hrapchak, B. Theory and Practice of Histotechnology (Batelle Press, Columbus, OH, 1987).

  48. Lee, S.-W., Wang, X., Chowdhury, N.R. & Chowdhury, J.R. Hepatocyte transplantation: state of the art and strategies for overcoming existing hurdles. Ann. Hepatol. 3, 48–53 (2004).

    PubMed  Google Scholar 

  49. Muraca, M. et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet, 317–318 (2002).

  50. Fox, I.J. et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N. Engl. J. Med. 338, 1422–1426 (1998).

    Article  CAS  Google Scholar 

  51. Sokal, E.M. et al. Hepatocyte transplantation in a 4-yearsold girl with peroxisomal biogenesis disease: technique, safety and metabolic follow-up. Transplantation 76, 735–738 (2003).

    Article  Google Scholar 

  52. Stock, P. et al. Hepatocytes derived from adult stem cells. Transplant. Proc. 40, 620–623 (2008).

    Article  CAS  Google Scholar 

  53. Michalopoulos, G.K. Liver regeneration. J. Cell. Physiol. 213, 286–300 (2007).

    Article  CAS  Google Scholar 

  54. Kraft, E. & Stickl, H. Vergleichende Messungen des Wachstums der Rattenleber mittels des Messquadrates und des Leitzschen Integrationstisches an histologischen Schnitten. Virchows Arch. 324, 650–661 (1954).

    Article  CAS  Google Scholar 

  55. Christ, B. & Fleig, W.E. Hepatozytentransplantation. Med. Klin. 100, 650–655 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The German Ministry of Education and Research (NBL3-NG4 and BMBF, PtJ-Bio, 0313909, 1106SF), as well as by the German Research Council (Ch 109/15-1).

Author information

Authors and Affiliations

Authors

Contributions

P.S. executed experiments and wrote the manuscript. S.B. executed experiments and wrote the manuscript. S.E. performed cell cultures and histochemical procedures. M.H. performed all biochemical analyses. M.M.D. discussed and designed experiments and wrote the manuscript. B.C. is the project leader and corresponding author, designed and supervised experiments and wrote the manuscript.

Corresponding author

Correspondence to Bruno Christ.

Additional information

*Dedicated to Konstantin H. Christ on the occasion of his 27th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, P., Brückner, S., Ebensing, S. et al. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 5, 617–627 (2010). https://doi.org/10.1038/nprot.2010.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing