Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro

Abstract

Segmental isotopic labeling is a powerful labeling technique for reducing nuclear magnetic resonance (NMR) signal overlap, which is associated with larger proteins by incorporating stable isotopes into only one region of a protein for NMR detections. Segmental isotopic labeling can not only reduce complexities of NMR spectra but also retain possibilities to carry out sequential resonance assignments by triple-resonance NMR experiments. We described in vivo (i.e., in Escherichia coli) and in vitro protocols for segmental isotopic labeling of multi-domain and fusion proteins via protein trans-splicing (PTS) using split DnaE intein without any refolding steps or α-thioester modification. The advantage of PTS approach is that it can be carried out in vivo by time-delayed dual-expression system with two controllable promoters. A segmentally isotope-labeled protein can be expressed in Escherichia coli within 1 d once required vectors are constructed. The total preparation time of a segmentally labeled sample can be as short as 7–13 d depending on the protocol used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Canonical reaction steps of protein trans-splicing (PTS).
Figure 2: Outline of the in vivo segmental isotope-labeling procedure described in the text.
Figure 3: Plasmid maps of the vectors used for protein ligation by protein trans-splicing (PTS).
Figure 4: Demonstration of in vivo protein ligation by the dual expression.
Figure 5: The effect of the induction order and inducer concentrations on protein ligation of A and R domains from AlgE4 epimerase (A-R).
Figure 6: HSQC spectra from one example.

Similar content being viewed by others

References

  1. Riek, R., Pervushin, K. & Wüthrich, K. TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wider, G. & Wüthrich, K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr. Opin. Struct. Biol. 9, 594–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ohki, S. & Kainosho, M. Stable isotope-labeling methods for protein NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 53, 208–226 (2008).

    Article  CAS  Google Scholar 

  4. Kainosho, M. & Tsuji, T. Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 6273–6279 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Bax, A. Multidimensional nuclear-magnetic-resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738–744 (1994).

    Article  CAS  Google Scholar 

  6. Yamazaki, T. et al. Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591–5592 (1998).

    Article  CAS  Google Scholar 

  7. Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Iwai, H. & Züger, S. Protein ligation: applications in NMR studies of proteins. Biotechnol. Genet. Eng. Rev. 24, 129–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Otomo, T., Teruya, K., Uegaki, K., Yamazaki, T. & Kyogoku, Y. Improved segmental isotope labeling of proteins and application to a larger protein. J. Biomol. NMR 14, 105–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Yagi, H., Tsujimoto, T., Yamazaki, T., Yoshida, M. & Akutsu, H. Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J. Am. Chem. Soc. 126, 16632–16638 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Muona, M., Aranko, A.S. & Iwai, H. Segmental isotopic labelling of a multi-domain protein by protein ligation using protein trans-splicing. Chembiochem 9, 2958–2961 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Züger, S. & Iwai, H. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotech. 23, 736–740 (2005).

    Article  Google Scholar 

  13. Wu, H., Hu, Z.M. & Liu, X.Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 95, 9226–9231 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Paulus, H. Protein splicing and related forms of protein autoprocessing. Ann. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Evans, T.C. Jr., Benner, J. & Xu, M.Q. Semisynthesis of cytotoxic proteins using a modified protein-splicing element. Protein Sci. 7, 2256–64 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skrisovska, L. & Allain, F.H. Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J. Mol. Biol. 375, 151–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Iwai, H., Züger, S., Jin, J. & Tam, P.H. Highly efficient protein trans-splicing by a naturally occurring split DnaE intein from Nostoc punctiforme . FEBS Lett. 580, 1853–1858 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zettler, J., Schütz, V. & Mootz, H.D. The naturally split NpuDnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Nallamsetty, S. & Waugh, D.S. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr. Purif. 45, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, P., Lugovskoy, A.A. & Wagner, G. A solubility enhancement tag (SET) for NMR studies of poorly behaving proteins. J. Biomol. NMR 20, 11–14 (2001).

    Article  PubMed  Google Scholar 

  21. Serber, Z. & Dötsch, V. In-cell NMR spectroscopy. Biochemistry 40, 14317–14323 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Aranko, A.S., Züger, S., Buchinger, E. & Iwaï, H. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS ONE 4, e5185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dillon, P.J. & Rosen, C.A. A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques 9, 298–300 (1990).

    CAS  PubMed  Google Scholar 

  25. Han, J.C. & Han, G.Y. A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal. Biochem. 220, 5–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Getz, E.B., Xiao, M., Chakrabarty, T., Cooke, R. & Selvin, P.R. A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal. Biochem. 273, 73–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H. & Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli . Appl. Environ. Microbiol. 64, 1694–1699 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Studier, F.W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219, 37–44 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X. & Studier, F.W. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J. Mol. Biol. 269, 10–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Brinkmann, U., Mattes, R.E. & Buckel, P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the DnaY gene product. Gene 85, 109–114 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Oeemig, J.S., Aranko, A.S., Djupsjöbacka, J., Heinämäki, K. & Iwaï, H. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. 583, 1451–1456 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Aachmann, F.L., Svanem, B.I., Güntert, P., Petersen, S.B., Valla, S. & Wimmer, R. NMR structure of the R-module: a parallel beta-roll subunit from an Azotobacter vinelandii mannuronan C-5 epimerase. J. Biol. Chem. 281, 7350–6 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Busche, A.E.L., Aranko, A.S., Talebzadeh-Farooji, M., Bernhard, F., Dötsch, V. & Iwaï, H. Segmental isotopic labelling of a central domain in a multi-domain protein by the use of only one robust DnaE intein. Angew. Chem. Int. Ed. 48, 6128–6131 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Wimmer, F.L. Aachmann and E. Buchinger for providing the plasmids for the AlgE4 experiments and S. Züger for Figure 1 . This work is supported by the grants from the Academy of Finland (118385), Sigrid Jusélius Foundation and the Biocentrum Helsinki.

Author information

Authors and Affiliations

Authors

Contributions

H.I. conceived and designed the experiments. M.M., A.S.A. and H.I. performed the experiments. M.M., A.S.A., V.R. and H.I. wrote the paper.

Corresponding author

Correspondence to Hideo Iwaï.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muona, M., Aranko, A., Raulinaitis, V. et al. Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc 5, 574–587 (2010). https://doi.org/10.1038/nprot.2009.240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.240

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing