Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Construction of a femtosecond laser microsurgery system

Abstract

Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical system layout.
Figure 2: An exploded view of the dichroic mounting adapter.
Figure 3: Optical path for simultaneous epifluorescence imaging and laser axotomy.
Figure 4: An exploded view of the beam expander.
Figure 5: Use of the infrared (IR) alignment tool.
Figure 6: Ablated patterns in permanent marker on cover glass under different alignment conditions.
Figure 7: Point spread function of the laser at the focal plane.
Figure 8: Femtosecond laser microsurgery.

Similar content being viewed by others

References

  1. Vogel, A., Noack, J., Huttman, G. & Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005).

    Article  CAS  Google Scholar 

  2. Botvinick, E.L., Venugopalan, V., Shah, J.V., Liaw, L.H. & Berns, M.W. Controlled ablation of microtubules using a picosecond laser. Biophys. J. 87, 4203–4212 (2004).

    Article  CAS  Google Scholar 

  3. Watanabe, W. et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt. Express 12, 4203–4213 (2004).

    Article  Google Scholar 

  4. Heisterkamp, A. et al. Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt. Express 13, 3690–3696 (2005).

    Article  CAS  Google Scholar 

  5. Tirlapur, U.K. & König, K. Targeted transfection by femtosecond laser. Nature 418, 290–291 (2002).

    Article  CAS  Google Scholar 

  6. Vogel, A. et al. Mechanisms of laser-induced dissection and transport of histologic specimens. Biophys. J. 93, 4481–4500 (2007).

    Article  CAS  Google Scholar 

  7. Shen, N. et al. Ablation of cytoskeletal filaments and mitochondria in live cells using femtosecond laser nanoscissor. Mech. Chem. Biosyst. 2, 17–25 (2005).

    PubMed  Google Scholar 

  8. Yanik, M.F. et al. Neurosurgery–functional regeneration after laser axotomy. Nature 432, 822 (2004).

    Article  CAS  Google Scholar 

  9. Chung, S.H., Clark, D.A., Gabel, C.V., Mazur, E. & Samuel, A.D.T. The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci. 7 (2006).

  10. Yanik, M.F. et al. Nerve regeneration in Caenorhabditis elegans after femtosecond laser axotomy. IEEE J. Sel. Top. Quantum Electron. 12, 1283–1291 (2006).

    Article  CAS  Google Scholar 

  11. Wu, Z. et al. Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc. Natl. Acad. Sci. USA 104, 15132–15137 (2007).

    Article  CAS  Google Scholar 

  12. Biron, D., Wasserman, S., Thomas, J.H., Samuel, A.D.T. & Sengupta, P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc. Natl. Acad. Sci. USA 105, 11002–11007 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, M. et al. A self-regulating feed-forward circuit controlling C. elegans egg-laying behavior. Curr. Biol. 18, 1445–1455 (2008).

    Article  CAS  Google Scholar 

  14. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009).

    Article  CAS  Google Scholar 

  15. Gabel, C.V., Antoine, F., Chuang, C.F., Samuel, A.D.T. & Chang, C. Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans . Development 135, 3623–3623 (2008).

    Article  CAS  Google Scholar 

  16. Chung, S.H. & Mazur, E. Femtosecond laser ablation of neurons in C. elegans for behavioral studies. Appl. Phys. A 96, 335–341 (2009).

    Article  CAS  Google Scholar 

  17. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. USA 102, 1047–1052 (2005).

    Article  CAS  Google Scholar 

  18. Nishimura, N. et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods 3, 99–108 (2006).

    Article  CAS  Google Scholar 

  19. Rohde, C.B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M.F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. USA 104, 13891–13895 (2007).

    Article  CAS  Google Scholar 

  20. Zeng, F., Rohde, C.B. & Yanik, M.F. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8, 653–656 (2008).

    Article  CAS  Google Scholar 

  21. Guo, S.X. et al. Femtosecond laser nanoaxotomy lab-on-a chip for in vivo nerve regeneration studies. Nat. Methods 5, 531–533 (2008).

    Article  CAS  Google Scholar 

  22. Hulme, S.E., Shevkoplyas, S.S., Apfeld, J., Fontana, W. & Whitesides, G.M. A microfabricated array of clamps for immobilizing and imaging C. elegans . Lab Chip 7, 1515–1523 (2007).

    Article  CAS  Google Scholar 

  23. Chung, K.H., Crane, M.M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans . Nat. Methods 5, 637–643 (2008).

    Article  CAS  Google Scholar 

  24. Colombelli, J., Reynaud, E.G. & Stelzer, E.H.K. Subcellular nanosurgery with a pulsed subnanosecond UV-A laser. Med. Laser Appl. 20, 217–222 (2005).

    Article  Google Scholar 

  25. Mandolesi, G., Madeddu, F., Bozzi, Y., Maffei, L. & Ratto, G.M. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. J. Fed. Am. Soc. Exp. Biol. 18, 1934–1936 (2004).

    CAS  Google Scholar 

  26. O'Brien, G.S. et al. Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J. Vis. Exp. pii: 1129; doi:10.3791/1129 (2009).

  27. Frostig, R.D. In Vivo Optical Imaging of Brain Function (CRC Press Ltd., Boca Raton, Florida, USA, 2002).

  28. Wood, W.B. The Nematode Caenorhabditis Elegans (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1988).

  29. Bourgeois, F. & Ben-Yakar, A. Femtosecond laser nanoaxotomy properties and their effect on nerve regeneration in C. elegans . Optics Express 15, 8521–8531 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following funding sources: NIH Director's New Innovator Award Program (1-DP2-OD002989–01), Packard Award in Science and Engineering, Sloan Award in Neuroscience, Lincoln Laboratory Advanced Concepts Committee, NSF Career Award, NSF Graduate Research Fellowship, 'La Caixa' Fellowship, NIH Biotechnology Training Grant and the NDSEG Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.L.G. and C.B.R. developed the laser axotomy techniques described in this protocol. M.A.S. and J.D.S. developed the beam expander structure. M.A., C.B.R. and C.L.G. developed the other elements of the system. M.A.S. developed the laser alignment technique. J.D.S., C.L.G. and C.P.-M. wrote the manuscript, and M.A. and M.F.Y. commented on the manuscript at all stages.

Corresponding author

Correspondence to Mehmet Fatih Yanik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, J., Gilleland, C., Pardo-Martin, C. et al. Construction of a femtosecond laser microsurgery system. Nat Protoc 5, 395–407 (2010). https://doi.org/10.1038/nprot.2010.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing