Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Crystallizing membrane proteins using lipidic mesophases

Abstract

A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human-engineered β2-adrenergic and adenosine A2A G protein–coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase and for setting up crystallizations in manual mode. Methods for harvesting microcrystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about 1 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-composition phase diagram of the monoolein/water system determined under 'conditions of use' in the heating and cooling directions from 20 °C.
Figure 2: Cartoon representation of the events proposed to take place during the crystallization of an integral membrane protein from the lipidic cubic mesophase.
Figure 3: The in meso crystallization robot.
Figure 4: A flowchart summarizing the steps involved in and time required for setting up an in meso membrane protein crystallization trial.
Figure 5: The glass sandwich crystallization plate.
Figure 6: The lipid-mixing device.
Figure 7: Ways to set up in meso crystallization trials using commercial plates.
Figure 8: Microsyringe-repeating dispenser.
Figure 9: Crystals of membrane proteins growing in the lipidic mesophase.
Figure 10: Images of birefringent solid and liquid crystalline lipidic phases recorded using polarized light microscopy.
Figure 11: Nonbirefringent 'objects' with sharp edges and corners that appear in lipid mesophases under in meso crystallization conditions.
Figure 12: Distinguishing protein from salt crystals.
Figure 13: A key for scoring the outcome of in meso crystallization trials.
Figure 14: Small-angle X-ray diffraction patterns of hydrated monoolein in the cubic and sponge phases.
Figure 15: X-ray diffraction patterns of the various phases that can occur in the monoolein/screen solution/water system.
Figure 16: Spectrophotometry/fluorescence cuvette and accessories.
Figure 17: Spectrophotometric and visual properties of BtuB in detergent solution and in the cubic phase.
Figure 18: Initial BtuB microcrystal hits.
Figure 19: Absorption spectrum of LH2 in detergent solution and in the lipidic cubic phase.
Figure 20: Initial β2AR-T4L microcrystal hits.

Similar content being viewed by others

References

  1. Laver, W.G., Bischofberger, N. & Webster, R.G. Disarming flu viruses. Sci. Am. 280, 78–87 (1999).

    Article  CAS  Google Scholar 

  2. Renfrey, S. & Featherstone, J. Structural proteomics. Nat. Rev. Drug Discov. 1, 175–176 (2002).

    Article  CAS  Google Scholar 

  3. Caffrey, M. Membrane protein crystallization. J. Struct. Biol. 142, 108–132 (2003).

    Article  CAS  Google Scholar 

  4. Wiener, M.C. A pedestrian guide to membrane protein crystallization. Methods 34, 364–372 (2004).

    Article  CAS  Google Scholar 

  5. Sutton, B.J. & Sohi, M.K. Crystallization of membrane proteins for X-ray analysis. Methods Mol. Biol. 27, 1–18 (1994).

    CAS  PubMed  Google Scholar 

  6. Fromme, P Crystallization of Photosystem I. In Methods and Results in Crystallization of Membrane Proteins (ed. Iwata, S.) 145–174 (International University Line, San Diego, 2003).

    Google Scholar 

  7. Ng, J.D., Stevens, R.C. & Kuhn, P. Protein crystallization in restricted geometry: advancing old ideas for modern times in structural proteomics. Methods Mol. Biol. 426, 363–376 (2008).

    Article  CAS  Google Scholar 

  8. Ng, J.D., Gavira, J.A. & Garcia-Ruiz, J.M. Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J. Struct. Biol. 142, 218–231 (2003).

    Article  CAS  Google Scholar 

  9. Loll, P.J., Tretiakova, A. & Soderblom, E. Compatibility of detergents with the microbatch-under-oil crystallization method. Acta Crystallogr. D Biol. Crystallogr. 59, 1114–1116 (2003).

    Article  Google Scholar 

  10. Chayen, N.E. Crystallization of Membrane Proteins in Oils. In Methods and Results in Crystallization of Membrane Proteins (ed. Iwata, S.) 131–140 (International University Line, San Diego, 2003).

    Google Scholar 

  11. Raman, P., Cherezov, V. & Caffrey, M. The Membrane Protein Data Bank. Cell. Mol. Life Sci. 63, 36–51 (2006).

    Article  CAS  Google Scholar 

  12. Faham, S. & Bowie, J.U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002).

    Article  CAS  Google Scholar 

  13. Takeda, K. et al. A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies. J. Mol. Biol. 283, 463–474 (1998).

    Article  CAS  Google Scholar 

  14. Qiu, H. & Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223–234 (2000).

    Article  CAS  Google Scholar 

  15. Luzzati, V. X-ray diffraction studies of lipid-water systems. In Biological Membranes, Physical Fact and Function Vol. 1, (ed. Chapman, D.) 71–123 (Academic Press, London, 1968).

    Google Scholar 

  16. Shipley, G.G., Green, J.P. & Nichols, B.W. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim. Biophys. Acta 311, 531–544 (1973).

    Article  CAS  Google Scholar 

  17. Wisniewski, J.R. Protocol to enrich and analyze plasma membrane proteins from frozen tissues. Methods Mol. Biol. 432, 175–183 (2008).

    Article  CAS  Google Scholar 

  18. Yip, T.T. & Hutchens, T.W. Immobilized metal-ion affinity chromatography. Methods Mol. Biol. 244, 179–190 (2004).

    CAS  PubMed  Google Scholar 

  19. Selkirk, C. Ion-exchange chromatography. Methods Mol. Biol. 244, 125–131 (2004).

    CAS  PubMed  Google Scholar 

  20. Cutler, P. Size-exclusion chromatography. Methods Mol. Biol. 244, 239–252 (2004).

    CAS  PubMed  Google Scholar 

  21. Landau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  Google Scholar 

  22. Cherezov, V., Clogston, J., Papiz, M.Z. & Caffrey, M. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357, 1605–1618 (2006).

    Article  CAS  Google Scholar 

  23. Cherezov, V. et al. In meso structure of the cobalamin transporter, BtuB, at 1.95 Å resolution. J. Mol. Biol. 364, 716–734 (2006).

    Article  CAS  Google Scholar 

  24. Cherezov, V. et al. In meso crystal structure and docking simulations suggest an alternative proteoglycan binding site in the OpcA outer membrane adhesin. Proteins 71, 24–34 (2008).

    Article  CAS  Google Scholar 

  25. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  26. Jaakola, V.P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    Article  CAS  Google Scholar 

  27. Cherezov, V. & Caffrey, M. Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J. Appl. Cryst. 36, 1372–1377 (2003).

    Article  CAS  Google Scholar 

  28. Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y.F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D Biol. Crystallogr. 60, 1795–1807 (2004).

    Article  Google Scholar 

  29. Cherezov, V. & Caffrey, M. Picolitre-scale crystallization of membrane proteins. J. Appl. Cryst. 39, 604–606 (2006).

    Article  CAS  Google Scholar 

  30. Cherezov, V. & Caffrey, M. A simple and inexpensive nanoliter-volume dispenser for highly viscous materials used in membrane protein crystallization. J. Appl. Cryst. 38, 398–400 (2005).

    Article  CAS  Google Scholar 

  31. Ai, X. & Caffrey, M. Membrane protein crystallization in lipidic mesophases: detergent effect. Biophys. J. 79, 394–405 (2000).

    Article  CAS  Google Scholar 

  32. Misquitta, Y. & Caffrey, M. Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys. J. 85, 3084–3096 (2003).

    Article  CAS  Google Scholar 

  33. Cheng, A., Hummel, B., Qiu, H. & Caffrey, M. A simple mechanical mixer for small viscous lipid-containing samples. Chem. Phys. Lipids 95, 11–21 (1998).

    Article  CAS  Google Scholar 

  34. Lide, D.R. (ed.). CRC Handbook of Chemistry and Physics 89th edn. (CRC Press, Boca Raton, FL, 2008).

    Google Scholar 

  35. Misquitta, Y. et al. Rational design of lipid for membrane protein crystallization. J. Struct. Biol. 148, 169–175 (2004).

    Article  CAS  Google Scholar 

  36. Lunde, C.S. et al. UV microscopy at 280 nm is effective in screening for the growth of protein microcrystals. J. Appl. Cryst. 38, 1031–1034 (2005).

    Article  CAS  Google Scholar 

  37. Ng, J.D. et al. The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth 168, 50–62 (1996).

    Article  CAS  Google Scholar 

  38. Benvenuti, M. & Mangani, S. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2, 1633–1651 (2007).

    Article  CAS  Google Scholar 

  39. Nollert, P. & Landau, E.M. Enzymic release of crystals from lipidic cubic phases. Biochem. Soc. Trans. 26, 709–713 (1998).

    Article  CAS  Google Scholar 

  40. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).

    Article  CAS  Google Scholar 

  41. Pflugrath, J.W. Macromolecular cryocrystallography—methods for cooling and mounting protein crystals at cryogenic temperatures. Methods 34, 415–423 (2004).

    Article  CAS  Google Scholar 

  42. Liu, W. & Caffrey, M. Gramicidin structure and disposition in highly curved membranes. J. Struct. Biol. 150, 23–40 (2005).

    Article  CAS  Google Scholar 

  43. Taylor, R., Burgner, J.W., Clifton, J. & Cramer, W.A. Purification and characterization of monomeric Escherichia coli vitamin B12 receptor with high affinity for colicin E3. J. Biol. Chem. 273, 31113–31118 (1998).

    Article  CAS  Google Scholar 

  44. Papiz, M.Z. et al. Crystallization and characterization of two crystal forms of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050. J. Mol. Biol. 209, 833–835 (1989).

    Article  CAS  Google Scholar 

  45. Prince, S.M. et al. Expression, refolding and crystallization of the OpcA invasin from Neisseria meningitidis . Acta Crystallogr. D Biol. Crystallogr. 57, 1164–1166 (2001).

    Article  CAS  Google Scholar 

  46. Rosenbaum, D.M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  Google Scholar 

  47. Cherezov, V. & Caffrey, M. Membrane protein crystallization in lipidic mesophases. A mechanism study using X-ray microdiffraction. Faraday Discuss. 136, 195–212 (2007).

    Article  CAS  Google Scholar 

  48. Cherezov, V., Fersi, H. & Caffrey, M. Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys. J. 81, 225–242 (2001).

    Article  CAS  Google Scholar 

  49. Caffrey, M. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. Biochemistry 26, 6349–6363 (1987).

    Article  CAS  Google Scholar 

  50. Cherezov, V. et al. Biophysical and transfection studies of the diC(14)-amidine/DNA complex. Biophys. J. 82, 3105–3117 (2002).

    Article  CAS  Google Scholar 

  51. Blanton, T.N. et al. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. Powder Diffr. 10, 91–95 (1995).

    Article  CAS  Google Scholar 

  52. Zhu, T. & Caffrey, M. Thermodynamic, thermomechanical, and structural properties of a hydrated asymmetric phosphatidylcholine. Biophys. J. 65, 939–954 (1993).

    Article  CAS  Google Scholar 

  53. Cherezov, V., Riedl, K.M. & Caffrey, M. Too hot to handle? Synchrotron X-ray damage of lipid membranes and mesophases. J. Synchrotron Radiat. 9, 333–341 (2002).

    Article  CAS  Google Scholar 

  54. Lakowicz, J. Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983).

    Book  Google Scholar 

  55. Caffrey, M. & Feigenson, G.W. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry 20, 1949–1961 (1981).

    Article  CAS  Google Scholar 

  56. Misquitta, L.V. et al. Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure 12, 2113–2124 (2004).

    Article  CAS  Google Scholar 

  57. Cherezov, V., Clogston, J., Misquitta, Y., Abdel-Gawad, W. & Caffrey, M. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys. J. 83, 3393–3407 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members and associates of the Caffrey group, past and present, for their assorted contributions over the years to this work. In particular, we acknowledge the contributions of D. Aragao, A-c Cheng, J. Clogston, D. Hart, N. Hoefer, B. Hummel, D. Li, W. Liu, J. Lyons, Y. Misquitta, L. Muthusubramaniam, A. Peddi, B. Sun, J. Tan and Y. Zheng. This work was supported in part by grants from Science Foundation Ireland (02-IN1-B266), the National Institutes of Health (RO1 program: GM61070 and GM75915; the NIH Roadmap Initiative: P50 GM073197; and the Protein Structure Initiative: U54 GM074961) and the National Science Foundation (IIS-0308078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Caffrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffrey, M., Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4, 706–731 (2009). https://doi.org/10.1038/nprot.2009.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.31

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing