Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices

Abstract

Seeding a monolayer of primary human endothelial cells on the surface of a polymerized three-dimensional collagen matrix in the presence of pro-angiogenic stimuli allows manipulation and analysis of rapid sprouting responses. This protocol is useful for elucidating incompletely defined intracellular mechanisms downstream of pro-angiogenic factors that regulate sprout formation and initiation, and can also be used to test the efficacy of pro-and anti-angiogenic compounds. We present protocols to culture endothelial cells, prepare three-dimensional collagen matrices and quantify and image rapid endothelial sprouting responses (24 h). This protocol can be carried out using either type I or type II collagen matrices with primary endothelial cells isolated from macrovascular and microvascular sources of varying species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating steps to carry out invasion assays.
Figure 2: Endothelial cell invasion in type II collagen matrices is driven by sphingosine 1-phosphate (S1P) and growth factors and is integrin dependent.
Figure 3: Schematic illustration of imaging chamber preparation.
Figure 4: Photographs illustrating expected responses following 24 h of invasion.
Figure 5: Comparable responses are observed with human umbilical vein (HUVEC), dermal and retinal endothelial cells.
Figure 6: Seeding proper endothelial cell density is critical for successful invasion responses.
Figure 7: Still images from time-lapse analyses.

Similar content being viewed by others

References

  1. Egeblad, M. et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Model. Mech. 1, 155–167 (2008); discussion 165.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kedrin, D., Wyckoff, J., Sahai, E., Condeelis, J. & Segall, J.E. Imaging tumor cell movement in vivo. Current Protocols in Cell Biology Unit 19.7 (2007).

  4. Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9, 893–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Weiss, P. & Garber, B. Shape and movement of mesenchyme cells as functions of the physical structure of the medium: contributions to a quantitative morphology. Proc. Natl. Acad. Sci. USA 38, 264–280 (1952).

    Article  CAS  PubMed  Google Scholar 

  6. Harrison, R.G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9, 787–846 (1910).

    Article  Google Scholar 

  7. Ehrmann, R.L. & Gey, G.O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J. Natl. Cancer Inst. 16, 1375–1403 (1956).

    CAS  PubMed  Google Scholar 

  8. Elsdale, T. & Bard, J. Collagen substrata for studies on cell behavior. J. Cell Biol. 54, 626–637 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, G.E. & Camarillo, C.W. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224, 39–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Aplin, A.C., Fogel, E., Zorzi, P. & Nicosia, R.F. The aortic ring model of angiogenesis. Methods Enzymol. 443, 119–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y. & Senger, D.R. Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB. J. 18, 457–468 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sweeney, S.M. et al. Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem. 278, 30516–30524 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bayless, K.J. & Davis, G.E. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312, 903–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Koh, W., Stratman, A.N., Sacharidou, A. & Davis, G.E. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443, 83–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Nakatsu, M.N. et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res. 66, 102–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Nicosia, R.F. & Madri, J.A. The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am. J. Pathol. 128, 78–90 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nicosia, R.F., McCormick, J.F. & Bielunas, J. The formation of endothelial webs and channels in plasma clot culture. Scan. Electron Microsc. (Pt 2): 793–799 (1984).

  18. Nicosia, R.F., Tchao, R. & Leighton, J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In vitro 18, 538–549 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Nehls, V. & Drenckhahn, D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. 50, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Nehls, V., Schuchardt, E. & Drenckhahn, D. The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc. Res. 48, 349–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Bell, S.E. et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci. 114 (Pt 15): 2755–2773 (2001).

    CAS  PubMed  Google Scholar 

  22. Su, S.C., Mendoza, E.A., Kwak, H.I. & Bayless, K.J. Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing. Am. J. Physiol. 295, C1215–C1229 (2008).

    Article  CAS  Google Scholar 

  23. Hahn, C.N. et al. Expression profiling reveals functionally important genes and coordinately regulated signaling pathway genes during in vitro angiogenesis. Physiol. Genomics 22, 57–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kahn, J. et al. Gene expression profiling in an in vitro model of angiogenesis. Am. J. Pathol. 156, 1887–1900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koh, W., Mahan, R.D. & Davis, G.E. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J. Cell Sci. 121 (Pt 7): 989–1001 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Koh, W. et al. Formation of endothelial lumens requires a coordinated PKC{epsilon}-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J. Cell Sci. 122 (Pt 11): 1812–1822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saunders, W.B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stratman, A.N. et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3D collagen matrices. Blood 114, 237–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sainson, R.C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB. J. 19, 1027–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Sainson, R.C. et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111, 4997–5007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bayless, K.J. & Davis, G.E. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J. Cell Sci. 115 (Pt 6): 1123–1136 (2002).

    CAS  PubMed  Google Scholar 

  32. Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E. & Weinstein, B.M. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kang, H., Bayless, K.J. & Kaunas, R. Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. Heart Circ. Physiol. 295, H2087–H2097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, P.F., Yeh, A.T. & Bayless, K.J. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp. Cell Res. 315, 396–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Emonard, H. et al. Interactions between fibroblasts and a reconstituted basement membrane matrix. J. Invest. Dermatol. 89, 156–163 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Bikfalvi, A., Cramer, E.M., Tenza, D. & Tobelem, G. Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol. Cell 72, 275–278 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S. & Reddi, A.H. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Hoying, J.B., Boswell, C.A. & Williams, S.K. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev. Biol. Anim. 32, 409–419 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hughes, C.C. Endothelial-stromal interactions in angiogenesis. Curr. Opin. Hematol. 15, 204–209 (2008).

    Article  PubMed  Google Scholar 

  40. Bornstein, M.B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Invest. 7, 134–137 (1958).

    CAS  PubMed  Google Scholar 

  41. Rajan, N., Habermehl, J., Cote, M.F., Doillon, C.J. & Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1, 2753–2758 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Dunlap, K.A. et al. Progesterone and placentation increase secreted phosphoprotein one (SPP1 or osteopontin) in uterine glands and stroma for histotrophic and hematotrophic support of ovine pregnancy. Biol. Reprod. 79, 983–990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engelse, M.A., Laurens, N., Verloop, R.E., Koolwijk, P. & van Hinsbergh, V.W. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation. Angiogenesis 11, 153–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Fisher, K.E., Pop, A., Koh, W., Anthis, N.J., Saunders, W.B. & Davis, G.E. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. Mol. Cancer 5, 69 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kwak, H.I., Mendoza, E.A. & Bayless, K.J. ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices. Matrix Biol. 28, 470–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, A., Lakshman, N. & Petroll, W.M. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res. 312, 3683–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P.R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76, 5674–5678 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, G.E., Black, S.M. & Bayless, K.J. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev. Biol. Anim. 36, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Iruela-Arispe, M.L. & Davis, G.E. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell 16, 222–231 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by American Heart Association Scientist Development Grant 053020N (K.J.B.) and start up funds from Texas A&M HSC. We thank Dr. George Davis (University of Missouri-Columbia) for reading the manuscript and Pei-Hsing Chen and Chih-Po Su for assistance with illustrations in Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

K.J.B., S.-C.S. and H.-I.K. designed the study; K.J.B. and H.-I.K. carried out the experiments; K.J.B., S.-C.S and H.-I.K collected and analyzed data; K.J.B., S.-C.S. and H.-I.K wrote the manuscript.

Corresponding author

Correspondence to Kayla J Bayless.

Supplementary information

Supplementary Movie 1

Differential interference contrast (DIC) analyses of invading endothelial cells stably expressing green fluorescent protein with time. Experiments were established as described in Box 2. The movie is compiled from 87 frames captured at 5 minute intervals. Movies were initiated at 12 hours of invasion and were allowed to proceed until 19.25 hours. Retracting processes, extending processes, individual endothelial cells, and large vacuoles are indicated in Figure 7. (WMV 2162 kb)

Supplementary Movie 2

Time-lapse analyses of invading endothelial cells stably expressing green fluorescent protein (GFP) using epifluorescence with time. Movie is compiled from 87 frames captured at 5 minute intervals. Movies were initiated at 12 hours of invasion and were allowed to proceed until 19.25 hours. Retracting processes, extending processes, individual endothelial cells, and vacuoles are indicated in Figure 7. (WMV 701 kb)

Supplementary Movie 3

Combination of Differential interference contrast (DIC; movie 1) and epifluorescence (movie 2) analyses of invading endothelial cells stably expressing green fluorescent protein with time. (WMV 2154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayless, K., Kwak, HI. & Su, SC. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc 4, 1888–1898 (2009). https://doi.org/10.1038/nprot.2009.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.221

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing