Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava

Abstract

Agrobacterium-mediated transformation of friable embryogenic calli (FEC) is the most widely used method to generate transgenic cassava plants. However, this approach has proven to be time-consuming and can lead to changes in the morphology and quality of FEC, influencing regeneration capacity and plant health. Here we present a comprehensive, reliable and improved protocol, taking 6 months, that optimizes Agrobacterium-mediated transformation of FEC from cassava model cultivar TMS60444. We cocultivate the FEC with Agrobacterium directly on the propagation medium and adopt the extensive use of plastic mesh for easy and frequent transfer of material to new media. This minimizes stress to the FEC cultures and permits a finely balanced control of nutrients, hormones and antibiotics. A stepwise increase in antibiotic concentration for selection is also used after cocultivation with Agrobacterium to mature the transformed FEC before regeneration. The detailed information given here for each step should enable successful implementation of this technology in other laboratories, including those being established in developing countries where cassava is a staple crop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Procedure for producing transgenic cassava plants.

Similar content being viewed by others

References

  1. Balat, M. & Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ. 86, 2273–2282 (2009).

    Article  CAS  Google Scholar 

  2. Ceballos, H., Iglesias, C.A., Pérez, J.C. & Dixon, A.G.O. Cassava breeding: opportunities and challenges. Plant Mol. Biol. 56, 503–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, N., Chavarriaga, P., Raemakers, K., Siritunga, D. & Zhang, P. Development and application of transgenic technologies in cassava. Plant Mol. Biol. 56, 671–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Raven, P., Fauquet, C., Swaminathan, M.S., Borlaug, N. & Samper, C. Where next for genome sequencing? Science 311, 468 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Li, H.Q., Sautter, C., Potrykus, I. & Puonti-Kaerlas, J. Genetic transformation of cassava (Manihot esculenta Crantz). Nat. Biotechnol. 14, 736–740 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Schöpke, C. et al. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat. Biotechnol. 14, 731–735 (1996).

    Article  PubMed  Google Scholar 

  7. Taylor, N.J. et al. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat. Biotechnol. 14, 726–730 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. González, A.E., Schöpke, C., Taylor, N.J., Beachy, R.N. & Fauquet, C.M. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep. 17, 827–831 (1998).

    Article  PubMed  Google Scholar 

  9. Schreuder, M.M., Raemakers, C.J.J.M., Jacobsen, E. & Visser, R.G.F. Efficient production of transgenic plants by Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz). Euphytica 120, 35–42 (2001).

    Article  CAS  Google Scholar 

  10. Zhang, P., Potrykus, I. & Puonti-Kaerlas, J. Efficient production of transgenic cassava using negative and positive selection. Transgenic Res. 9, 405–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, P. & Gruissem, W. Production of transgenic cassava (Manihot esculenta Crantz). in Transgenic Crops of the World—Essential Protocols. Kluwer Academic Publishers, 301–319 (2004).

    Chapter  Google Scholar 

  12. Zhang, P., Vanderschuren, H., Fütterer, J. & Gruissem, W. Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol. J. 3, 385–397 (2005).

    Article  PubMed  Google Scholar 

  13. Vanderschuren, H. et al. Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol. Biol. 64, 549–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Vanderschuren, H., Alder, A., Zhang, P. & Gruissem, W. Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol. Biol. 70, 265–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Baba, A.I. et al. Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Sci. 175, 717–723 (2008).

    Article  CAS  Google Scholar 

  16. Bhalla, P.L. & Singh, M.B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea . Nat. Protoc. 3, 181–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura, A., Aichi, I. & Matsuoka, M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 1, 2796–2802 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X.R., Henriques, R., Lin, S.S., Niu, Q.W. & Chua, N.H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473 (1962).

    Article  CAS  Google Scholar 

  20. Gresshof, P. & Doy, C.H. Derivation of a haploid cell line from Vitis vinifera and importance of stage of meiotic development of anthers for haploid culture of this and other genera. Z. Pflanzenphysio. 73, 132–141 (1974).

    Article  Google Scholar 

  21. Raemakers, K. et al. Progress made in FEC transformation of cassava. Euphytica 120, 15–24 (2001).

    Article  CAS  Google Scholar 

  22. Alves, S.C. et al. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat. Protoc. 4, 638–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, P., Legris, G., Coulin, P. & Puonti-Kaerlas, J. Production of stably transformed cassava plants via particle bombardment. Plant Cell Rep. 19, 939–945 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Bill & Melinda Gates Foundation (BioCassava Plus program). J.A.O. received a PhD fellowship from the Rockefeller Foundation. We thank Kim Schlegel, Simona Pedrussio and Noemi Peter (ETH Zurich) for valuable technical assistance. We also thank Nigel Taylor (Donald Danforth Plant Science Center) and Peng Zhang (Shanghai Institute for Plant Physiology and Ecology) for discussions on the cassava transformation protocol. Christof Sautter, Samuel C. Zeeman (ETH Zurich) and Ingo Potrykus are acknowledged for their support.

Author information

Authors and Affiliations

Authors

Contributions

S.E.B. and H.V. designed the experiments and prepared the paper; S.E.B. and J.A.O. undertook experimental work with technical support from M.N.; and H.V., J.R.B and W.G. supervised the project.

Corresponding authors

Correspondence to S E Bull or H Vanderschuren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, S., Owiti, J., Niklaus, M. et al. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4, 1845–1854 (2009). https://doi.org/10.1038/nprot.2009.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.208

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing