Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The morphological and molecular features of the epithelial-to-mesenchymal transition

Abstract

Here we describe several methods for the characterization of epithelial–mesenchymal transition (EMT) at the cellular, molecular and behavioral level. This protocol describes both in vitro and in vivo approaches designed to analyze different features that when taken together permit the characterization of cells undergoing transient or stable EMT. We define straightforward methods for phenotypical, cellular and transcriptional characterization of EMT in vitro in monolayer cultures. The procedure also presents technical details for the generation of in vitro three-dimensional (3D) cultures analyzing cell phenotype and behavior during the EMT process. In addition, we describe xenotransplantation techniques to graft 3D cell cultures into mice to study in vivo invasion in a physiological-like environment. Finally, the protocol describes the analysis of selected EMT markers from experimental and human tumor samples. This series of methods can be applied to the study of EMT under various experimental and biological situations. Once the methodology is established, the time required to complete the protocol may vary from 3 to 4 weeks (monolayer cultures) and up to 6–8 weeks if including 3D cultures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart of the procedure.
Figure 2: Schematic diagram of the reporter vectors used in promoter assays.
Figure 3: Immunophenotypical characterization of EMT in two-dimensional cultures.
Figure 4: Analyses of the expression of EMT-related markers at the protein, mRNA and promoter levels.
Figure 5: Wound healing assay.
Figure 6: Implantation of three-dimensional cell cultures into nude mice.
Figure 7: Analysis of cell growth and behavior in 3D cultures.
Figure 8: High-throughput analysis and validation of EMT markers in tumors.

Similar content being viewed by others

References

  1. Hay, E.D. An overview of epithelio-mesenchymal transformation. Acta. Anat. (Basel) 154, 8–20 (1995).

    Article  CAS  Google Scholar 

  2. Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  3. Huber, M.A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  Google Scholar 

  4. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428 (2007).

    Article  CAS  Google Scholar 

  5. Barrallo-Gimeno, A. & Nieto, M.A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

    Article  CAS  Google Scholar 

  6. Moreno-Bueno, G., Portillo, F. & Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27, 6958–6969 (2008).

    Article  CAS  Google Scholar 

  7. Moreno-Bueno, G. et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial–mesenchymal transition. Cancer Res. 66, 9543–9556 (2006).

    Article  CAS  Google Scholar 

  8. De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65, 6237–6244 (2005).

    Article  CAS  Google Scholar 

  9. Gupta, G.P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  Google Scholar 

  10. Yang, J. & Weinberg, R.A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  Google Scholar 

  11. Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    Article  CAS  Google Scholar 

  12. Nieto, M.A. Epithelial–mesenchymal transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol. doi:10.1387/ijdb.072410mn (2008).

  13. Mani, S.A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  Google Scholar 

  14. Hugo, H. et al. Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell. Physiol. 213, 374–383 (2007).

    Article  CAS  Google Scholar 

  15. Polyak, K. & Weinberg, R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  16. Christiansen, J.J. & Rajasekaran, A.K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    Article  CAS  Google Scholar 

  17. Scheel, C., Onder, T., Karnoub, A. & Weinberg, R.A. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 67, 11476–11479; discussion: 11479–11480 (2007).

    Article  CAS  Google Scholar 

  18. Thiery, J.P. & Sleeman, J.P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  19. de Craene, V., van Roy, F. & Berx, G. Unraveling signalling cascades for the Snail family of transcription factors. Cell. Signal 17, 535–547 (2005).

    Article  CAS  Google Scholar 

  20. Moustakas, A. & Heldin, C.H. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98, 1512–1520 (2007).

    Article  CAS  Google Scholar 

  21. Zavadil, J. & Böttinger, E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  Google Scholar 

  22. Massagué, J. TGF in cancer. Cell 134, 215–230 (2008).

    Article  Google Scholar 

  23. Gort, E.H. et al. Hypoxic regulation of metastasis via hypoxia-inducible factors. Curr. Mol. Med. 8, 60–67 (2008).

    Article  CAS  Google Scholar 

  24. Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002).

    Article  CAS  Google Scholar 

  25. Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M. & Nieto, M.A. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1449 (2009).

    Article  CAS  Google Scholar 

  26. Guaita, S. et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J. Biol. Chem. 277, 39209–39216 (2002).

    Article  CAS  Google Scholar 

  27. Kang, Y. & Massagué, J. Epithelial to mesenchymal transition: twist in development and metastasis. Cell 6, 277–279 (2004).

    Article  Google Scholar 

  28. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  CAS  Google Scholar 

  29. Perez-Moreno, M.A. et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J. Biol. Chem. 276, 27424–27431 (2001).

    Article  CAS  Google Scholar 

  30. Bolós, V. et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511 (2003).

    Article  Google Scholar 

  31. Peinado, H., Quintanilla, M. & Cano, A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278, 21113–21123 (2003).

    Article  CAS  Google Scholar 

  32. Peinado, H. et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo . J. Cell Sci. 117, 2827–2839 (2004).

    Article  CAS  Google Scholar 

  33. Peinado, H. et al. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 24, 3446–3458 (2005).

    Article  CAS  Google Scholar 

  34. Sobrado, V.R. et al. The class I bHLH factors E2-2A and E2-2B regulate EMT. J. Cell Sci. 122, 1014–1024 (2009).

    Article  CAS  Google Scholar 

  35. Peinado, H. et al. Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res. 68, 4541–4550 (2008).

    Article  CAS  Google Scholar 

  36. Sarrio, D. et al. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68, 989–997 (2008).

    Article  CAS  Google Scholar 

  37. Miller, D.S. et al. Manipulating cell migration and proliferation with a light-activated polypeptide. Chembiochem 10, 577–584 (2009).

    Article  CAS  Google Scholar 

  38. Sarrió, D. et al. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 9, 74 (2009).

    Article  Google Scholar 

  39. Maas-Szabowski, N., Fusenig, N.E. & Stark, H.J. Experimental models to analyze differentiation functions of cultured keratinocytes in vitro and in vivo . Methods Mol. Biol. 289, 47–60 (2005).

    PubMed  Google Scholar 

  40. Batlle, E. et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat. Cell Biol. 2, 84–89 (2000).

    Article  CAS  Google Scholar 

  41. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  42. Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267–1278 (2001).

    Article  CAS  Google Scholar 

  43. Eger, A. et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375–2385 (2005).

    Article  CAS  Google Scholar 

  44. Mani, S.A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl. Acad. Sci. USA 104, 10069–10074 (2007).

    Article  CAS  Google Scholar 

  45. Hartwell, K.A. et al. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969–18974 (2006).

    Article  CAS  Google Scholar 

  46. Thuault, S. et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial–mesenchymal transition. J. Cell Biol. 174, 175–183 (2006).

    Article  CAS  Google Scholar 

  47. Schramek, H. et al. Loss of active MEK1-ERK1/2 restores epithelial phenotype and morphogenesis in transdifferentiated MDCK cells. Am. J. Physiol. Cell Physiol. 285, C652–C661 (2003).

    Article  CAS  Google Scholar 

  48. Montesano, R., Soulié, P., Eble, J.A. & Carrozzino, F. Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J. Cell Sci. 118, 3487–3500 (2005).

    Article  CAS  Google Scholar 

  49. Gal, A. et al. Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27, 1218–1230 (2008).

    Article  CAS  Google Scholar 

  50. Waerner, T. et al. ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10, 227–339 (2006).

    Article  CAS  Google Scholar 

  51. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167, 769–781 (2004).

    Article  CAS  Google Scholar 

  52. Rowe, R.G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol. 184, 399–408 (2009).

    Article  CAS  Google Scholar 

  53. Medici, D., Hay, E.D. & Goodenough, D.A. Cooperation between snail and LEF-1 transcription factors is essential for TGF-beta1-induced epithelial–mesenchymal transition. Mol. Biol. Cell 17, 1871–1879 (2006).

    Article  CAS  Google Scholar 

  54. Ohkubo, T. & Ozawa, M.J. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. Cell Sci. 117, 1675–1685 (2004).

    Article  CAS  Google Scholar 

  55. Savagner, P., Yamad, K.M. & Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial–mesenchymal transition. J. Cell Biol. 137, 1403–1419 (1997).

    Article  CAS  Google Scholar 

  56. Zhou, B.P. et al. Dual regulation of Snail by GSK-3beta-mediated phos-phorylation in control of epithelial–mesenchymal transition. Nat. Cell Biol. 6, 931–940 (2004).

    Article  CAS  Google Scholar 

  57. Arima, Y. et al. Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition. Cancer Res. 68, 5104–5112 (2008).

    Article  CAS  Google Scholar 

  58. Guan, F., Handa, K. & Hakomori, S.I. Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc. Natl. Acad. Sci. USA 106, 7461–7466 (2009).

    Article  CAS  Google Scholar 

  59. Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. Cancer Cell 4, 499–515 (2003).

    Article  CAS  Google Scholar 

  60. Grotegut, S., von Schweinitz, D., Christofori, G. & Lehembre, F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25, 3534–3545 (2006).

    Article  CAS  Google Scholar 

  61. Gotzmann, J. et al. A crucial function of PDGF in TGF-mediated cancer progression of hepatocytes. Oncogene 25, 3170–3185 (2006).

    Article  CAS  Google Scholar 

  62. Lien, H.C. et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial–mesenchymal transition. Oncogene 26, 7859–7871 (2007).

    Article  CAS  Google Scholar 

  63. Tomita, K. et al. Cadherin switching in human prostate cancer progression. Cancer Res. 60, 3650–3654 (2000).

    CAS  Google Scholar 

  64. Locascio, A. et al. Biological potential of a functional human SNAIL retrogene. J. Biol. Chem. 277, 38803–38809 (2002).

    Article  CAS  Google Scholar 

  65. Olmeda, D. et al. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res. 67, 11721–11731 (2007).

    Article  CAS  Google Scholar 

  66. Olmeda, D. et al. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene 27, 4690–4701 (2008).

    Article  CAS  Google Scholar 

  67. Brown, K. et al. v-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis. Cell 46, 447–456 (1986).

    Article  CAS  Google Scholar 

  68. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  69. Janda, E. et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299–313 (2002).

    Article  CAS  Google Scholar 

  70. Martin-Villar, E. et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial–mesenchymal transition. J. Cell Sci. 119, 4541–4553 (2006).

    Article  CAS  Google Scholar 

  71. Shirakihara, T., Saitoh, M. & Miyazono, K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol. Biol. Cell 18, 3533–3544 (2007).

    Article  CAS  Google Scholar 

  72. Behrens, J., Löwrick, O., Klein-Hitpass, L. & Birchmeier, W. The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc. Natl. Acad. Sci. USA 88, 11495–11499 (1991).

    Article  CAS  Google Scholar 

  73. Shirayoshi, Y., Okada, T.S. & Takeichi, M. N-linked oligosaccharides are not involved in the function of a cell-cell binding glycoprotein E-cadherin. Cell Struct. Funct. 11, 245–252 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Montes and R. Díaz-Uriarte for technical assistance in generation of stable transfectants and in microarray data analysis, respectively, and to S. Lavotshkin for his friendly help with editorial assistance. This study has been supported by grant nos. SAF2004-00361, SAF2007-63051, SAF2007-63075 and Consolider-Ingenio 2010 CSD2007-00017 (MICIN, Spain), by MRTN 2004-005428 (European Commission) and by FMM07 (Fundación Mutua Madrileña).

Author information

Authors and Affiliations

Authors

Contributions

G.M.-B. was responsible for design and performance of microarray profiling studies including the statistical analysis, performed IHC analysis on tissue arrays and promoter assays, designed and carried out the Supplementary Methods, Figures 2, 4 and 8, and Tables 1, 2 and 7 and drafted this paper; H.P. was responsible for the design and analysis of 3D cultures (in vitro and in vivo), performed immunofluorescence analysis in monolayer and 3D cultures, designed and drew Box 2, Figures 6 and 7, and Table 3, collaborated in Figure 3 and drafted this paper; P.M. was responsible for the wound healing assays and collaborated in the IF analysis in monolayer cultures, designed and drew Box 1, Figures 1, 2 and 5, and Table 4 and drafted this paper; D.O. was responsible for the RT-PCR and qPCR analysis and for the design of species-specific primers (Table 5) and specific shRNAs probes; E.C. participated in the characterization of MDCK-E47 cell system at protein, mRNA and promoter level, collaborated in microarray analysis and drew Figures 3 and 4; V.S. collaborated with HP in the optimization of 3D cultures (in vitro and in vivo) and performed experiments described in Figure 7; J.P. performed, analyzed and interpreted the tissue arrays, and collaborated in drawing Figure 8; F.P. drew Tables 1, 2, 4, 5 and 6 and drafted this paper; A.C. coordinated the writing of this paper and together with F.P. was responsible for the final draft of this paper.

Corresponding author

Correspondence to Amparo Cano.

Supplementary information

Supplementary Methods

Selection of EMT genes after gene profiling analysis (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Bueno, G., Peinado, H., Molina, P. et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 4, 1591–1613 (2009). https://doi.org/10.1038/nprot.2009.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.152

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing