Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Differentiation of human oligodendrocytes from pluripotent stem cells

Abstract

We have developed a four-part protocol to differentiate human embryonic stem cells (hESCs) to oligodendrocyte progenitor cells (OPCs) according to developmental principles. In the first 2 weeks, hESCs are induced to differentiate into neuroepithelial cells, which form neural tube–like rosettes. In the following 10 d, these neuroepithelial cells are specified to OLIG2-expressing progenitors in the presence of retinoic acid (RA) and sonic hedgehog (SHH). Upon treatment with fibroblast growth factor 2 (FGF2) for another 10 d, these progenitors convert to OLIG2 and NKX2.2-expressing pre-OPCs. Finally, the pre-OPCs take 8–9 weeks to differentiate into OPCs, which express additional markers of oligodendrocytes, such as SOX10, platelet-derived growth factor receptor alpha (PDGFRα) and NG2. The unique aspects of the protocol are the use of FGF2 to promote the differentiation of gliogenic pre-OPCs in the third part and the removal of FGF2 during the transition of pre-OPCs to OPCs. This 3-month differentiation protocol consistently yields OPCs of high purity capable of producing myelin sheaths in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the four-part oligodendrocyte progenitor cell (OPC) differentiation from human embryonic stem cells (hESCs).
Figure 2: Induction of neuroepithelial cells.
Figure 3: Generation of pre-oligodendrocyte progenitor cells (OPCs) and OPCs.

Similar content being viewed by others

References

  1. Lu, Q.R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Q., Wang, S. & Anderson, D.J. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343 (2000).

    Article  CAS  Google Scholar 

  3. Sugimori, M. et al. Combinatorial actions of patterning and HLH transcription factors in the spatiotemporal control of neurogenesis and gliogenesis in the developing spinal cord. Development 134, 1617–1629 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, S.K., Lee, B., Ruiz, E.C. & Pfaff, S.L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marquardt, T. & Pfaff, S.L. Cracking the transcriptional code for cell specification in the neural tube. Cell 106, 651–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001).

    CAS  PubMed  Google Scholar 

  7. Stolt, C.C., Lommes, P., Friedrich, R.P. & Wegner, M. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 131, 2349–2358 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, Q., Choi, G. & Anderson, D.J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S.C. Defining glial cells during CNS development. Nat. Rev. Neurosci. 2, 840–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Avellana-Adalid, V., Nait-Oumesmar, B. & Lachapelle, F. Baron-Van Evercooren, A. Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J. Neurosci. Res. 45, 558–570 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Billon, N., Jolicoeur, C., Ying, Q.L., Smith, A. & Raff, M. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell Sci. 115, 3657–3665 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Du, Z.W., Li, X.J., Nguyen, G.D. & Zhang, S.C. Induced expression of Olig2 is sufficient for oligodendrocyte specification but not for motoneuron specification and astrocyte repression. Mol. Cell. Neurosci. 33, 371–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Samanta, J. & Kessler, J.A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131, 4131–4142 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S.C., Lundberg, C., Lipsitz, D., O'Connor, L.T. & Duncan, I.D. Generation of oligodendroglial progenitors from neural stem cells. J. Neurocytol. 27, 475–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Roy, N.S. et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19, 9986–9995 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, S.C., Ge, B. & Duncan, I.D. Tracing human oligodendroglial development in vitro. J. Neurosci. Res. 59, 421–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Izrael, M. et al. Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol. Cell. Neurosci. 34, 310–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kang, S.M. et al. Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25, 419–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, B.Y., Du, Z.W., Li, X.J., Ayala, M. & Zhang, S.C. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136, 1443–1452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    Article  Google Scholar 

  22. Pankratz, M.T. et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511–1520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu, H. et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129, 681–693 (2002).

    CAS  PubMed  Google Scholar 

  24. Vallstedt, A., Klos, J.M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lavaute, T.M. et al. Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 27, 1741–1749 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, X.J. et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26, 886–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Neurological Disorders and Stroke (R01 NS045926), the National Multiple Sclerosis Society (NMSS TR-3761), a gift from the Busta family and the Bleser family, and partly by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (P30 HD03352).

Author information

Authors and Affiliations

Authors

Contributions

B.-Y.H. and Z.-W.D. designed and carried out experiments, analyzed data and wrote the paper; S.-C.Z. coordinated the study, designed experiments, analyzed data, wrote and finally approved the paper.

Corresponding author

Correspondence to Su-Chun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, BY., Du, ZW. & Zhang, SC. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4, 1614–1622 (2009). https://doi.org/10.1038/nprot.2009.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.186

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing