Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of mutational spectra by denaturing capillary electrophoresis

Abstract

The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., ±5 °C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene–disease associations and microbial populations. Detection limits are about 5 × 10−3 (mutants copies/total copies) but can be as low as 10−6 (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melting profile of the mitochondrial DNA sequence.
Figure 2: Noise reduction by two-stage DNA amplification method.
Figure 3: Steps in DCE protocol.
Figure 4: Theoretical DNA melting profile of complementary strands of an example target sequence.
Figure 5: Illustration of partial melting of amplified DNA.
Figure 6: Effects of applying different DNA melting algorithms.
Figure 7: Possible strand combinations after DNA amplification of heterozygote sample and heteroduplex formation.
Figure 8: Schematics of optical bench-assembled CDCE instrument.
Figure 9: Effect on allele separation with increase in denaturing temperature.
Figure 10: Visualization of Taq polymerase–induced mutants following mutant enrichment by fraction collection of the heteroduplex region.
Figure 11: Allele separation of heterozygote sample by CDCE in ABI 310 and ABI 3100 DNA sequencing instruments (Applied Biosystems).
Figure 12: Simultaneous separation of alleles in 12 different fragments using CyDCE on a 96-capillary instrument (MegaBACE 1000).
Figure 13: Reproducibility of allele separation by CyDCE.

Similar content being viewed by others

References

  1. Watson, J. & Crick, F. Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Benzer, S. & Freese, E. Induction of specific mutations with 5-bromouracil. Proc. Natl. Acad. Sci. USA 44, 112–119 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins, F.S., Morgan, M. & Patrinos, A. The human genome project: lessons from large-scale biology. Science 300, 286–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hall, N. Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 210, 1518–1525 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cha, R.S., Zarbl, H., Keohavong, P. & Thilly, W.G. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl. 2, 14–20 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Bjørheim, J. et al. Mutation analyses of KRAS exon 1 comparing three different techniques: temporal temperature gradient electrophoresis, constant denaturant capillary electrophoresis and allele specific polymerase chain reaction. Mutat. Res. 403, 103–112 (1998).

    Article  PubMed  Google Scholar 

  10. Sudo, H. et al. Distributions of five common point mutants in the human tracheal-bronchial epithelium. Mutat. Res. 596, 113–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Fischer, S., Lumelsky, N. & Lerman, L. Separation of DNA fragments differing by single base substitution—application to beta-degrees-thalassemia identification. DNA—J. Mol. Cell. Biol. 2, 171 (1983).

    Google Scholar 

  12. Fischer, S.G. & Lerman, L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekstrøm, P.O., Børresen-Dayle, A.L., Qvist, H., Giercksky, K.E. & Thilly, W.G. Detection of low-frequency mutations in exon 8 of the TP53 gene by constant denaturant capillary electrophoresis (CDCE). Biotechniques 27, 128 (1999).

    Article  PubMed  Google Scholar 

  14. Kumar, R. et al. Separation of transforming amino acid-substituting mutations in codons 12, 13 and 61 the N-ras gene by constant denaturant capillary electrophoresis (CDCE). Carcinogenesis 16, 2667–2673 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Khrapko, K. et al. Constant denaturant capillary electrophoresis (CDCE): a high resolution approach to mutational analysis. Nucleic Acids Res. 22, 364–369 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fodde, R. & Losekoot, M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum. Mutat. 3, 83–94 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Smith-Sørensen, B., Hovig, E., Andersson, B. & Børresen, A.L. Screening for mutations in human HPRT cDNA using the polymerase chain reaction (PCR) in combination with constant denaturant gel electrophoresis (CDGE). Mutat. Res. 269, 41–53 (1992).

    Article  PubMed  Google Scholar 

  18. Hovig, E., Smith-Sørensen, B., Uitterlinden, A.G. & Børresen, A.L. Detection of DNA variation in cancer. Pharmacogenetics 2, 317–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Børresen, A.L. et al. Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc. Natl. Acad. Sci. USA 88, 8405–8409 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Poland, D. Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13, 1859–1871 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Gotoh, O. Prediction of melting profiles and local helix stability for sequenced DNA. Adv. Biophys. 16, 1–52 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Gotoh, O. & Tagashira, Y. Locations of frequently opening regions on natural DNAs and their relation to functional loci. Biopolymers 20, 1043–1058 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Tachibana, H., Gotoh, O. & Wada, A. High resolution thermal melting studies of DNA. Prog. Clin. Biol. Res. 64, 299–313 (1981).

    CAS  PubMed  Google Scholar 

  24. Poland, D. DNA probability profiles: examples from the Treponema pallidum genome. Biophys. Chem. 104, 279–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ekstrøm, P.O., Bjørheim, J. & Thilly, W.G. Technology to accelerate pangenomic scanning for unknown point mutations in exonic sequences: cycling temperature capillary electrophoresis (CTCE). BMC Genet. 8, 54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fischer, S.G. & Lerman, L.S. Separation of random fragments of DNA according to properties of their sequences. Proc. Natl. Acad. Sci. USA 77, 4420–4424 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thilly, W.G. Potential use of gradient denaturing gel electrophoresis in obtaining mutational spectra from human cells. Carcinog. Compr. Surv. 10, 511–528 (1985).

    CAS  PubMed  Google Scholar 

  28. Cariello, N.F., Scott, J.K., Kat, A.G., Thilly, W.G. & Keohavong, P. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am. J. Hum. Genet. 42, 726–734 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hovig, E., Smith-Sørensen, B., Brøgger, A. & Børresen, A.L. Constant denaturant gel electrophoresis, a modification of denaturing gradient gel electrophoresis, in mutation detection. Mutat. Res. 262, 63–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Ruiz-Martinez, M.C. et al. DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection. Anal. Chem. 65, 2851–2858 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Pariat, Y.F. et al. Separation of DNA fragments by capillary electrophoresis using replaceable linear polyacrylamide matrices. J. Chromatogr. A. 652, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Piggee, C.A., Muth, J., Carrilho, E. & Karger, B.L. Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J. Chromatogr. A. 781, 367–375 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Tomita-Mitchell, A. et al. Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutation Research 450, 125–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li-Sucholeiki, X.C. & Thilly, W.G. A sensitive scanning technology for low frequency nuclear point mutations in human genomic DNA. Nucleic Acids Res. 28, E44 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li-Sucholeiki, X.C. et al. Applications of constant denaturant capillary electrophoresis/high-fidelity polymerase chain reaction to human genetic analysis. Electrophoresis 20, 1224–1232 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ekstrøm, P.O., Wasserkort, R., Minarik, M., Foret, F. & Thilly, W.G. Two-point fluorescence detection and automated fraction collection applied to constant denaturant capillary electrophoresis. Biotechniques 29, 582 (2000).

    Article  PubMed  Google Scholar 

  37. Khrapko, K. et al. Mitochondrial mutational spectra in human cells and tissues. Proc. Natl. Acad. Sci. USA 94, 13798–13803 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coller, H.A. et al. Mutational spectra of a 100-base pair mitochondrial DNA target sequence in bronchial epithelial cells: a comparison of smoking and nonsmoking twins. Cancer Res. 58, 1268–1277 (1998).

    CAS  PubMed  Google Scholar 

  39. Bjørheim, J., Ekstrøm, P.O., Fossberg, E., Børresen-Dale, A.L. & Gaudernack, G. Automated constant denaturant capillary electrophoresis applied for detection of KRAS exon 1 mutations. Biotechniques 30, 972–975 (2001).

    Article  PubMed  Google Scholar 

  40. Bjørheim, J., Gaudernack, G., Giercksky, K.E. & Ekstrøm, P.O. Direct identification of all oncogenic mutants in KRAS exon 1 by cycling temperature capillary electrophoresis. Electrophoresis 24, 63–69 (2003).

    Article  PubMed  Google Scholar 

  41. Ekstrøm, P.O. & Bjørheim, J. Evaluation of sieving matrices used to separate alleles by cycling temperature capillary electrophoresis. Electrophoresis 27, 1878–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ekstrøm, P.O., Bjørheim, J., Gaudernack, G. & Giercksky, K.E. Population screening of single-nucleotide polymorphisms exemplified by analysis of 8000 alleles. J. Biomol. Screen. 7, 501–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bjørheim, J., Minarik, M., Gaudernack, G. & Ekstrøm, P.O. Evaluation of denaturing conditions in analysis of DNA variants applied to multi-capillary electrophoresis instruments. J. Sep. Sci. 26, 1163–1168 (2003).

    Article  CAS  Google Scholar 

  44. Hinselwood, D.C., Abrahamsen, T.W. & Ekstrøm, P.O. BRAF mutation detection and identification by cycling temperature capillary electrophoresis. Electrophoresis 26, 2553–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hinselwood, D.C., Warren, D.J. & Ekstrøm, P.O. High-throughput gender determination using automated denaturant gel capillary electrophoresis. Electrophoresis 26, 2562–2566 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kristensen, A.T., Bjørheim, J., Wiig, J., Giercksky, K.E. & Ekstrøm, P.O. DNA variants in the ATM gene are not associated with sporadic rectal cancer in a Norwegian population-based study. Int. J. Colorectal Dis. 19, 49–54 (2004).

    Article  PubMed  Google Scholar 

  47. Morgenthaler, S. & Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat. Res. 615, 28–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Keohavong, P., Wang, C.C., Cha, R.S. & Thilly, W.G. Enzymatic amplification and characterization of large DNA fragments from genomic DNA. Gene 71, 211–216 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Andre, P., Kim, A., Khrapko, K. & Thilly, W.G. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Research 7, 843–852 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khrapko, K., Coller, H.A., Hanekamp, J.S. & Thilly, W.G. Identification of point mutations in mixtures by capillary electrophoresis hybridization. Nucleic Acids Res. 26, 5738–5740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khrapko, K. et al. Mutational spectrometry without phenotypic selection: human mitochondrial DNA. Nucleic Acids Res. 25, 685–693 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Khrapko, K., Coller, H.A., Li-Sucholeiki, X.C., Andre, P.C. & Thilly, W.G. High resolution analysis of point mutations by constant denaturant capillary electrophoresis (CDCE). Methods Mol. Biol. 163, 57–72 (2001).

    CAS  PubMed  Google Scholar 

  53. Marcelino, L.A. et al. Chemically induced mutations in mitochondrial DNA of human cells: mutational spectrum of N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res. 58, 2857–2862 (1998).

    CAS  PubMed  Google Scholar 

  54. Zheng, W., Khrapko, K., Coller, H.A., Thilly, W.G. & Copeland, W.C. Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat. Res. 599, 11–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Coller, H.A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28, 147–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Coller, H.A. et al. Clustering of mutant mitochondrial DNA copies suggests stem cells are common in human bronchial epithelium. Mutat. Res. 578, 256–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Marcelino, L.A. & Thilly, W.G. Mitochondrial mutagenesis in human cells and tissues. Mutat. Res. 434, 177–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Zheng, W., Marcelino, L.A. & Thilly, W.G. Scanning low-frequency point mutants in the mitochondrial genome using constant denaturant capillary electrophoresis. Methods Mol. Biol. 197, 93–106 (2002).

    CAS  PubMed  Google Scholar 

  59. Oller, A.R. & Thilly, W.G. Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt gene. J. Mol. Biol. 228, 813–826 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Cariello, N.F., Keohavong, P., Kat, A.G. & Thilly, W.G. Molecular analysis of complex human cell populations: mutational spectra of MNNG and ICR-191. Mut. Res. 231, 165–176 (1990).

    Article  CAS  Google Scholar 

  61. Chen, J. & Thilly, W.G. Mutational spectrum of chromium(VI) in human cells. Mutat. Res. 323, 21–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, J. & Thilly, W.G. Mutational spectra vary with exposure conditions: benzo[a]pyrene in human cells. Mutat. Res. 357, 209–217 (1996).

    Article  PubMed  Google Scholar 

  63. Hemminki, K. & Thilly, W.G. Implications of results of molecular epidemiology on DNA adducts, their repair and mutations for mechanisms of human cancer. IARC Sci. Publ. 157, 217–235 (2004).

    Google Scholar 

  64. Singer, S. et al. 13C- and 31P-NMR studies of human colon cancer in-vitro and in-vivo. Surg. Oncol. 2, 7–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Muniappan, B.P. & Thilly, W.G. The DNA polymerase beta replication error spectrum in the adenomatous polyposis coli gene contains human colon tumor mutational hotspots. Cancer Res. 62, 3271–3275 (2002).

    CAS  PubMed  Google Scholar 

  66. Chen, J. & Thilly, W.G. Use of denaturing-gradient gel electrophoresis to study chromium-induced point mutations in human cells. Environ. Health Perspect. 102 (Suppl. 3): 227–229 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Keohavong, P. & Thilly, W.G. Determination of point mutational spectra of benzo[a]pyrene-diol epoxide in human cells. Environ. Health Perspect. 98, 215–219 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gostjeva, E.V. & Thilly, W.G. Stem cell stages and the origins of colon cancer: a multidisciplinary perspective. Stem Cell Rev. 1, 243–251 (2005).

    Article  PubMed  Google Scholar 

  69. Lim, E.L., Tomita, A.V., Thilly, W.G. & Polz, M.F. Combination of competitive quantitative PCR and constant-denaturant capillary electrophoresis for high-resolution detection and enumeration of microbial cells. Appl. Environ. Microbiol. 67, 3897–3903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thompson, J.R. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Acinas, S.G., Marcelino, L.A., Klepac-Ceraj, V. & Polz, M.F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thompson, J.R., Marcelino, L.A. & Polz, M.F. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR'. Nucleic Acids Res. 30, 2083–2088 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomita-Mitchell, A., Muniappan, B.P., Herrero-Jimenez, P., Zarbl, H. & Thilly, W.G. Single nucleotide polymorphism spectra in newborns and centenarians: identification of genes coding for rise of mortal disease. Gene 223, 381–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Li-Sucholeiki, X.C., Hu, G., Perls, T., Tomita-Mitchell, A. & Thilly, W.G. Scanning the beta-globin gene for mutations in large populations by denaturing capillary and gel electrophoresis. Electrophoresis 26, 2531–2538 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Li-Sucholeiki, X.C. et al. Detection and frequency estimation of rare variants in pools of genomic DNA from large populations using mutational spectrometry. Mutat. Res. 570, 267–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, F. et al. The human genomic melting map. PLoS Computat. Biol. 3, e93 (2007).

    Article  CAS  Google Scholar 

  77. Abd-Elsalam, K.A. Bioinformatic tools and guideline for PCR primer design. Afr. J. Biotechnol. 2, 91–95 (2003).

    Article  CAS  Google Scholar 

  78. Tøstesen, E. Partly melted DNA conformations obtained with a probability peak finding method. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 061922 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Fixman, M. & Freire, J.J. Theory of DNA melting curves. Biopolymers 16, 2693–2704 (1977).

    Article  CAS  PubMed  Google Scholar 

  80. Steger, G. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res. 22, 2760–2768 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bjørheim, J., Abrahamsen, T.W., Kristensen, A.T., Gaudernack, G. & Ekstrøm, P.O. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis. Mutat. Res. 526, 75–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Bjørheim, J. & Ekstrøm, P.O. Review of denaturant capillary electrophoresis in DNA variation analysis. Electrophoresis 26, 2520–2530 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Bjørheim, J., Gaudernack, G. & Ekstrøm, P.O. Melting gel techniques in single nucleotide polymorphism and mutation detection: from theory to automation. J. Sep. Sci. 25, 637–647 (2002).

    Article  Google Scholar 

  84. Thilly, W.G. et al. Direct measurement of mutational spectra in humans. Genome 31, 590–593 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, A.S. & Thilly, W.G. Ligation of high-melting-temperature 'clamp' sequence extends the scanning range of rare point-mutational analysis by constant denaturant capillary electrophoresis (CDCE) to most of the human genome. Nucleic Acids Res. 31, e97 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Myers, R.M., Fischer, S.G., Lerman, L.S. & Maniatis, T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3131–3145 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Myers, R.M., Fischer, S.G., Maniatis, T. & Lerman, L.S. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13, 3111–3129 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aguilera, A., Gomez, F., Lospitao, E. & Amils, R. A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Syst. Appl. Microbiol. 29, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Cao, W., Hashibe, M., Rao, J.Y., Morgenstern, H. & Zhang, Z.F. Comparison of methods for DNA extraction from paraffin-embedded tissues and buccal cells. Cancer Detect. Prev. 27, 397–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Dedhia, P., Tarale, S., Dhongde, G., Khadapkar, R. & Das, B. Evaluation of DNA extraction methods and real time PCR optimization on formalin-fixed paraffin-embedded tissues. Asian Pac. J. Cancer Prev. 8, 55–59 (2007).

    PubMed  Google Scholar 

  91. Fredricks, D.N., Smith, C. & Meier, A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 43, 5122–5128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McOrist, A.L., Jackson, M. & Bird, A.R. A comparison of five methods for extraction of bacterial DNA from human faecal samples. J. Microbiol. Methods 50, 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Mohlenhoff, P., Muller, L., Gorbushina, A.A. & Petersen, K. Molecular approach to the characterisation of fungal communities: methods for DNA extraction, PCR amplification and DGGE analysis of painted art objects. FEMS Microbiol. Lett. 195, 169–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sato, Y. et al. Comparison of the DNA extraction methods for polymerase chain reaction amplification from formalin-fixed and paraffin-embedded tissues. Diagn. Mol. Pathol. 10, 265–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Suenaga, E. & Nakamura, H. Evaluation of three methods for effective extraction of DNA from human hair. J. Chromatogr. 820, 137–141 (2005).

    CAS  Google Scholar 

  96. Yang Zh, H., Xiao, Y., Zeng, G.M., Xu Zh, Y. & Liu, Y. Comparison of methods for total community DNA extraction and purification from compost. Appl. Microbiol. Biotechnol. 74, 918–925 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I. & Khorana, H. Studies on polynucleotides. 96. Repair replication of short synthetic DNAs as catalyzed by DNA polymerases. J. Mol. Biol. 56, 341 (1971).

    Article  CAS  PubMed  Google Scholar 

  98. Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51 (Part 1): 263–273 (1986).

    Article  CAS  PubMed  Google Scholar 

  99. Kristensen, A.T., Bjørheim, J. & Ekstrøm, P.O. Detection of mutations in exon 8 of TP53 by temperature gradient 96-capillary array electrophoresis. Biotechniques 33, 650–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Lind, H. et al. Frequency of TP53 mutations in relation to Arg72Pro genotypes in non small cell lung cancer. Cancer Epidemiol. Biomarkers Prev. 16, 2077–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Lorentzen, A.R. et al. Lack of association with the CD28/CTLA4/ICOS gene region among Norwegian multiple sclerosis patients. J. Neuroimmunol. 166, 197–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Keohavong, P. & Thilly, W.G. Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acad. Sci. USA 86, 9253–9257 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bjørheim, J., Gaudernack, G. & Ekstrøm, P.O. Mutation analysis of TP53 exons 5-8 by automated constant denaturant capillary electrophoresis. Tumor Biol. 22, 323–327 (2001).

    Article  Google Scholar 

  104. Bjørheim, J., Minarik, M., Gaudernack, G. & Ekstrøm, P.O. Mutation detection in KRAS exon 1 by constant denaturant capillary electrophoresis in 96 parallel capillaries. Anal. Biochem. 304, 200–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  106. Khrapko, K., Coller, H. & Thilly, W. Efficiency of separation of DNA mutations by constant denaturant capillary electrophoresis is controlled by the kinetics of DNA melting equilibrium. Electrophoresis 17, 1867–1874 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per O Ekstrøm.

Ethics declarations

Competing interests

The authors declare competing financial interests. Beckman-Coulter, Inc. has licensed patents for constant temperature DCE technology and related applications from MIT. Drs Khrapko, Li-Sucholeiki and Thilly as inventors receive a portion of annual royalties.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekstrøm, P., Khrapko, K., Li-Sucholeiki, XC. et al. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat Protoc 3, 1153–1166 (2008). https://doi.org/10.1038/nprot.2008.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.79

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing