Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes

Abstract

High-throughput genome-wide screening methods to detect subtle genomic imbalances are extremely important for diagnostic genetics and genomics. Here, we provide a detailed protocol for a microarray-based technique, applying the principle of multiplex amplifiable probe hybridization (MAPH). Methodology and software have been developed for designing unique PCR-amplifiable sequences (400–600 bp) covering any genomic region of interest. These sequences are amplified, cloned and spotted onto arrays (targets). A mixture of the same sequences (probes) is hybridized to genomic DNA immobilized on a membrane. Bound probes are recovered and quantitatively amplified by PCR, labeled and hybridized to the array. The procedure can be completed in 4–5 working days, excluding microarray preparation. Unlike array-comparative genomic hybridization (array-CGH), test DNA of specifically reduced complexity is hybridized to an array of identical small amplifiable target sequences, resulting in increased hybridization specificity and higher potential for increasing resolution. Array-MAPH can be used for detection of small-scale copy-number changes in complex genomes, leading to genotype–phenotype correlations and the discovery of new genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A flow diagram outlining the steps involved in array-multiplex amplifiable probe hybridization (MAPH) methodology.
Figure 2: Agarose gel electrophoresis for quality control of probe amplification with specific primers.
Figure 3: Agarose gel electrophoresis for cloning efficiency control, performed by insert amplification with PZA and PZB primers from bacterial colonies.
Figure 4: Probe amplification with PZA and PZB primers from hybridized filters.
Figure 5: Scanned images of successful and unsuccessful array-multiplex amplifiable probe hybridization (MAPH) reactions.
Figure 6: Examples of array-multiplex amplifiable probe hybridization (MAPH) profiles for normal DNA samples.
Figure 7: Array-multiplex amplifiable probe hybridization (MAPH) profile of patient A-2879 carrying a known duplication of Xp22.32-p22.31.
Figure 8: Array-multiplex amplifiable probe hybridization (MAPH) profile of patient 22467 carrying a deletion of 1.5 mb on chromosome X.
Figure 9: Array-multiplex amplifiable probe hybridization (MAPH) profile of patient A045 resulted in the detection of a 500-kb deletion on Xq25, based on a single-probe deviation.

Similar content being viewed by others

References

  1. Patsalis, P.C. et al. Detection of small genomic imbalances using microarray-based multiplex amplifiable probe hybridization. Eur. J. Hum. Genet. 15, 162–172 (2007).

    Article  CAS  Google Scholar 

  2. Sismani, C., Kousoulidou, L. & Patsalis, P.C. Multiplex Amplifiable Probe Hybridization, Molecular Biomethods Handbook 2nd edn. (eds. Walker, J.M. & Rapley, R.), Chapter 13 (Humana Press, Springer Science, Totawa, New Jersey, 2008).

  3. Armour, J.A., Sismani, C., Patsalis, P.C. & Cross, G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res. 28, 605–609 (2000).

    Article  CAS  Google Scholar 

  4. Kousoulidou, L. et al. Screening of 20 patients with X-linked mental retardation using chromosome X-specific array-MAPH. Eur. J. Med. Genet. 50, 399–410 (2007).

    Article  Google Scholar 

  5. Kousoulidou, L. et al. Application of two different microarray-based copy-number detection methodologies—array-CGH and array-MAPH—with identical amplifiable target sequences. Clin. Chem. Lab. Med. (in the press).

  6. Puusepp, H., Zordania, R., Paal, M., Bartsch, O. & Õunap, K. A girl with partial Turner syndrome and absence epilepsy. Pediatr. Neurol. 38, 289–292 (2008).

    Article  Google Scholar 

  7. Patsalis, P.C., Kousoulidou, L., Sismani, C., Männik, K. & Kurg, A. MAPH: from gels to microarrays. Eur. J. Med. Genet. 48, 241–249 (2005).

    Article  Google Scholar 

  8. Gibbons, B., Datta, P., Wu, Y., Chan, A. & Al Armour, J. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA. BMC Genomics 7, 163 (2006).

    Article  Google Scholar 

  9. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  CAS  Google Scholar 

  10. Wagenstaller, J. et al. Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. Am. J. Hum. Genet. 81, 768–779 (2007).

    Article  CAS  Google Scholar 

  11. Bignell, G.R. et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–295 (2004).

    Article  CAS  Google Scholar 

  12. Huang, J. et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum. Genomics 1, 287–299 (2004).

    Article  CAS  Google Scholar 

  13. Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44, 305–319 (2005).

    Article  CAS  Google Scholar 

  14. Mantripragada, K.K., Buckley, P.G., Jarbo, C., Menzel, U. & Dumanski, J.P. Development of NF2 gene specific, strictly sequence defined diagnostic microarray for deletion detection. J. Mol. Med. 81, 443–451 (2003).

    Article  CAS  Google Scholar 

  15. Mantripragada, K.K. et al. DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets. Int. J. Mol. Med. 13, 273–279 (2004).

    CAS  PubMed  Google Scholar 

  16. Mantripragada, K.K. et al. Identification of novel deletion breakpoints bordered by segmental duplications in the NF1 locus using high resolution array-CGH. J. Med. Genet. 43, 28–38 (2006).

    Article  CAS  Google Scholar 

  17. Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003).

    Article  CAS  Google Scholar 

  18. Schouten, J.P. et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57 (2002).

    Article  Google Scholar 

  19. Zeng, F. et al. Array-MLPA: comprehensive detection of deletions and duplications and its application to DMD patients. Hum. Mutat. 29, 190–197 (2008).

    Article  CAS  Google Scholar 

  20. Carletti, E., Guerra, E. & Alberti, S. The forgotten variables of DNA array hybridization. Trends Biotechnol. 24, 443–448 (2006).

    Article  CAS  Google Scholar 

  21. Kennedy, G.C. et al. Large-scale genotyping of complex DNA. Nat. Biotechnol. 21, 1233–1237 (2003).

    Article  CAS  Google Scholar 

  22. Lucito, R. et al. Genetic analysis using genomic representations. Proc. Natl. Acad. Sci. USA 95, 4487–4492 (1998).

    Article  CAS  Google Scholar 

  23. Lucito, R. et al. Detecting gene copy number fluctuations in tumor cells by microarray analysis of genomic representations. Genome Res. 10, 1726–1736 (2000).

    Article  CAS  Google Scholar 

  24. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  25. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  26. de Bustos, C. et al. Analysis of copy number variation in the normal human population within a region containing complex segmental duplications on 22q11 using high-resolution array-CGH. Genomics 88, 152–162 (2006).

    Article  CAS  Google Scholar 

  27. Andreson, R., Reppo, E., Kaplinski, L. & Remm, M. GENOMEMASKER package for designing unique genomic PCR primers. BMC Bioinformatics 7, 172 (2006).

    Article  Google Scholar 

  28. Morgulis, A., Gertz, E.M., Schäffer, A.A. & Agarwala, R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22, 134–141 (2006).

    Article  CAS  Google Scholar 

  29. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  30. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).

    Article  CAS  Google Scholar 

  31. Kane, M.D. et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res. 28, 4552–4557 (2000).

    Article  CAS  Google Scholar 

  32. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  Google Scholar 

  33. Sambrook, J. & Russell, D.W. In Molecular Cloning: A Laboratory Manual 3rd edn. Vol. 3 E10–E15 (eds. Sambrook, J. & Russell, D.W.) A8.9–A8.24 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  34. Kulka, J. et al. Detection of HER-2/neu gene amplification in breast carcinomas using quantitative real-time PCR—a comparison with immunohistochemical and FISH results. Pathol. Oncol. Res. 12, 197–204 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the grants 30/2001 from the Cyprus RPF, QLRT-2001-01810 from the EURO-MRX EU, 5467 from the Estonian Science Foundation, 0182649s04 and PBGMR06907 from the Estonian Ministry of Education and Research and 070191/Z/03/Z from the Wellcome Trust International Senior Research Grant. We also thank D. Andreou, C. Tryfonos, E. Hadjiyanni, C. Pitta, C. Antoniades, S. Bashiardes and G. Slavin for their contribution. Many thanks to Prof. J. Vermeesch, Dr. K. Õunap and Dr. R. Ordania for the provision of DNA samples and the Wellcome Trust Sanger Institute for the provision of BAC/PAC clones.

Author information

Authors and Affiliations

Authors

Contributions

L.K. and K.M. contributed equally to this work. A.K. and P.C.P. are the principal investigators of this study.

Corresponding author

Correspondence to Philippos C Patsalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kousoulidou, L., Männik, K., Sismani, C. et al. Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat Protoc 3, 849–865 (2008). https://doi.org/10.1038/nprot.2008.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.49

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing