Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and use of Leadfluor-1, a synthetic fluorophore for live-cell lead imaging

Abstract

Leadfluor-1 (LF1) is a small-molecule fluorescent sensor for detecting lead in biological and environmental samples, including live cells. This dye uses a xanthenone fluorescent scaffold coupled to a dicarboxylate pseudocrown ether receptor to achieve selective detection of Pb2+ in the presence of biologically relevant metal ions, including divalent calcium, magnesium and zinc. LF1 fluorescence increases by up to 18-fold on binding Pb2+. In this protocol, we describe the synthesis and application of LF1 to imaging lead accumulation within live cells. The preparation of LF1 is anticipated to take 14–21 d, and the imaging assays can be performed in 1–2 d with cultured cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Fluorescence response of 5 μM LF1 in response to Pb2+.
Figure 3: Live-cell lead imaging with Leadfluor-1.

Similar content being viewed by others

References

  1. Flegal, A.R. & Smith, D.R. Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ. Res. 58, 125–133 (1992).

    Article  CAS  Google Scholar 

  2. Winder, C., Carmichael, N.G. & Lewis, P.D. Effects of chronic low-level lead exposure on brain development and function. Trends Neurosci. 5, 207–209 (1982).

    Article  CAS  Google Scholar 

  3. Araki, S., Sato, H., Yokoyama, K. & Murata, K. Subclinical neurophysiological effects of lead: a review on peripheral, central, and autonomic nervous system effects in lead workers. Am. J. Ind. Med. 37, 193–204 (2000).

    Article  CAS  Google Scholar 

  4. Cory-Slechta, D.A. The behavioral toxicity of lead: problems and perspectives. Adv. Behav. Pharmacol. 4, 211–255 (1984).

    Article  CAS  Google Scholar 

  5. Claudio, E.S., Godwin, H.A. & Magyar, J.S. Fundamental coordination chemistry, environmental chemistry, and biochemistry of lead(II). Prog. Inorg. Chem. 51, 1–144 (2003).

    CAS  Google Scholar 

  6. Bressler, J., Kim, K.-A., Chakraborti, T. & Goldstein, G. Molecular mechanisms of lead neurotoxicity. Neurochem. Res. 24, 595–600 (1999).

    Article  CAS  Google Scholar 

  7. Hanas, J.S., Rodgers, J.S., Bantle, J.A. & Cheng, Y.-G. Leadinhibition of DNA-binding mechanism of Cys2His2 zinc finger proteins. Mol. Pharmacol. 56, 982–988 (1999).

    Article  CAS  Google Scholar 

  8. Magyar, J.S. et al. Reexamination of Lead(II) Coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning. J. Am. Chem. Soc. 127, 9495–9505 (2005).

    Article  CAS  Google Scholar 

  9. Deo, S. & Godwin, H.A. A selective, ratiometric fluorescent sensor for Pb2+. J. Am. Chem. Soc. 122, 174–175 (2000).

    Article  CAS  Google Scholar 

  10. Chen, P. et al. An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew. Chem. Int. Ed. Engl. 44, 2715–2719 (2005).

    Article  CAS  Google Scholar 

  11. Li, J. & Lu, Y.A. Highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122, 10466–10467 (2000).

    Article  CAS  Google Scholar 

  12. Liu, J. & Lu, Y.A. Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    Article  CAS  Google Scholar 

  13. Brown, A.K., Li, J., Pavot, C.M. & Lu, Y. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 42, 7152–7161 (2003).

    Article  CAS  Google Scholar 

  14. Liu, J. & Lu, Y. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal. Chem. 75, 6666–6672 (2003).

    Article  CAS  Google Scholar 

  15. Liu, J. & Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126, 12298–12305 (2004).

    Article  CAS  Google Scholar 

  16. Chang, I.-H. et al. Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ. Sci. Technol. 39, 3756–3761 (2005).

    Article  CAS  Google Scholar 

  17. Swearingen, C.B. et al. Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Anal. Chem. 77, 442–448 (2005).

    Article  CAS  Google Scholar 

  18. Wernette, D.P. et al. Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst 131, 41–47 (2006).

    Article  CAS  Google Scholar 

  19. Wernette, D.P., Mead, C., Bohn, P.W. & Lu, Y. Surface immobilization of catalytic beacons based on ratiometric fluorescent DNAzyme sensors: a systematic study. Langmuir 23, 9513–9521 (2007).

    Article  CAS  Google Scholar 

  20. Xiao, Y., Rowe, A.A. & Plaxco, K.W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 129, 262–263 (2007).

    Article  CAS  Google Scholar 

  21. Kim, I.-B., Dunkhorst, A., Gilbert, J. & Bunz, U.H.F. Sensing of lead ions by a carboxylate-substituted PPE: multivalency effects. Macromolecules 38, 4560–4562 (2005).

    Article  CAS  Google Scholar 

  22. Takahashi, Y., Hayashita, T. & Suzuki, T.M. Test strips for lead(II) based on a unique color change of PVC-film containing O-donor macrocycles and an anionic dye. Anal. Sci. 23, 147–150 (2007).

    Article  Google Scholar 

  23. Liu, Y. Fluorescent chemosensor for metal ions based on optically active polybinaphthyls and 1,3,4-oxadiazole. Polymer 48, 6799 (2007).

    Article  CAS  Google Scholar 

  24. Yu, M. et al. Non-ionic water-soluble crown-ether-substituted polyfluorene as fluorescent probe for lead ion assays. Macromol. Rapid Commun. 28, 1333–1338 (2007).

    Article  CAS  Google Scholar 

  25. Shetty, R.S. et al. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal. Bioanal. Chem. 376, 11–17 (2003).

    Article  CAS  Google Scholar 

  26. Chae, M.-Y., Yoon, J. & Czarnik, A.W. Chelation-enhanced fluorescence chemosensing of Pb(II), an inherently quenching metal ion. J. Mol. Recognit. 9, 297–303 (1996).

    Article  CAS  Google Scholar 

  27. Xia, W.-S. et al. Chemosensors for Lead(II) and alkali metal ions based on self-assembling fluorescence enhancement (SAFE). J. Phys. Chem. B. 106, 833–843 (2002).

    Article  CAS  Google Scholar 

  28. Chen, C.-T. & Huang, W.-P. A highly selective fluorescent chemosensor for lead ions. J. Am. Chem. Soc. 124, 6246–6247 (2002).

    Article  CAS  Google Scholar 

  29. Metivier, R., Leray, I. & Valeur, B. A highly sensitive and selective fluorescent molecular sensor for Pb(II) based on a calix[4]arene bearing four dansyl groups. Chem. Commun. (Camb.) 996–997 (2003).

  30. Hayashita, T. et al. Highly selective recognition of lead ion in water by a podand fluoroionophore/g-cyclodextrin complex sensor. Chem. Commun. (Camb.) 2160–2161 (2003).

  31. Sun, M. et al. Simple PbII fluorescent probe based on PbII-catalyzed hydrolysis of phosphodiester. Biopolymers 72, 413–420 (2003).

    Article  CAS  Google Scholar 

  32. Kim, S.K., Lee, J.K., Lim, J.M., Kim, J.W. & Kim, J.S. Pb2+ sensing chemo-sensor: Thiacalix[4]crown-based lumino-ionophore. Bull. Kor. Chem. Soc. 25, 1247–1250 (2004).

    Article  CAS  Google Scholar 

  33. Kwon, J.Y. et al. A highly selective fluorescent chemosensor for Pb2+.. J. Am. Chem. Soc. 127, 10107–10111 (2005).

    Article  CAS  Google Scholar 

  34. Kavallieratos, K., Rosenberg, J.M., Chen, W.-Z. & Ren, T. Fluorescent sensing and selective Pb(II) extraction by a dansylamide ion-exchanger. J. Am. Chem. Soc. 127, 6514–6515 (2005).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Xiang, W., Yang, R., Liu, F. & Li, K. Highly selective sensing of lead ion based on α-, β-, γ-, and δ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/[β]-CD inclusion complex. J. Photochem. Photobiol. A. 173, 264–270 (2005).

    Article  CAS  Google Scholar 

  36. Métivier, R., Leray, I. & Valeur, B. Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. Chem. Eur. J. 10, 4480–4490 (2004).

    Article  Google Scholar 

  37. Jain, A.K., Gupta, V.K., Singh, L.P. & Raisoni, J.R. A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim. Acta 51, 2547–2553 (2006).

    Article  CAS  Google Scholar 

  38. Wu, F.-Y. Aselective fluorescent sensor for Pb(II) in water. Tetrahedron Lett. 47, 8851 (2006).

    Article  CAS  Google Scholar 

  39. Liu, J.-M. Highlyselective fluorescent sensing of Pb2+ by a new calix[4]arene derivative. Tetrahedron Lett. 47, 1905 (2006).

    Article  CAS  Google Scholar 

  40. Ma, L.J., Liu, Y.F. & Wu, Y. A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water. Chem. Commun.(Camb.) 2702–2704 (2006).

  41. Fillaut, J.-L. Flavonolbased ruthenium acetylides as fluorescent chemosensors for lead ions. J. Organomet. Chem. 693, 228 (2007).

    Article  Google Scholar 

  42. He, Q., Miller, E.W., Wong, A.P. & Chang, C.J. A selective fluorescent sensor for detecting lead in living cells. J. Am. Chem. Soc. 128, 9316–9317 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E., He, Q. & Chang, C. Preparation and use of Leadfluor-1, a synthetic fluorophore for live-cell lead imaging. Nat Protoc 3, 777–783 (2008). https://doi.org/10.1038/nprot.2008.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.43

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing