Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detecting ligands and dissecting nuclear receptor-signaling pathways using recombinant strains of the yeast Saccharomyces cerevisiae

Abstract

This is a general protocol for the identification of natural and xenobiotic ligands of metazoan nuclear receptors (NRs) expressed in yeast. Yeast engineered to express an NR and a response element-driven reporter gene provide a system to detect and quantify ligand-dependent transcriptional activity. Such assays allow researchers to measure different types of ligands and determine dose-dependent activation of NRs. This methodology can also be used to examine the components of signal transduction pathways when conducted with mutant or engineered yeast strains expressing additional proteins or having alternate DNA response elements. This assay typically takes 2–3 d to complete, but most of this time entails cell growth rather than 'hands on' time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical results seen from experiments using yeast strains expressing the human AhR and Arnt proteins and an RE-driven lacZ reporter plasmid.
Figure 2: Yeast reporter strains identify other proteins involved in NR–ligand-signaling pathways.

Similar content being viewed by others

References

  1. Fang, H. et al. Quantitative comparisons of in vitro assays for estrogenic activities. Environ. Health Perspect. 108, 723–729 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gronemeyer, H., Gustafsson, J.A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    CAS  PubMed  Google Scholar 

  3. McEwan, I.J. Bakers yeast rises to the challenge: reconstitution of mammalian steroid receptor signalling in S. cerevisiae. Trends Genet. 17, 239–243 (2001).

    CAS  PubMed  Google Scholar 

  4. Metzger, D., White, J.H. & Chambon, P. The human oestrogen receptor functions in yeast. Nature 334, 31–36 (1988).

    CAS  PubMed  Google Scholar 

  5. Collins, B.M., McLachlan, J.A. & Arnold, S.F. The estrogenic and antiestrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids 62, 365–372 (1997).

    CAS  PubMed  Google Scholar 

  6. Miller, C.A. III A human aryl hydrocarbon receptor signaling pathway constructed in yeast displays additive responses to ligand mixtures. Toxicol. Appl. Pharmacol. 160, 297–303 (1999).

    CAS  PubMed  Google Scholar 

  7. Routledge, E.J., White, R., Parker, M.G. & Sumpter, J.P. Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J. Biol. Chem. 275, 35986–35993 (2000).

    CAS  PubMed  Google Scholar 

  8. Sitcheran, R., Emter, R., Kralli, A. & Yamamoto, K.R. A genetic analysis of glucocorticoid receptor signaling. Identification and characterization of ligand-effect modulators in Saccharomyces cerevisiae. Genetics 156, 963–972 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran, H.T. et al. Requirement of co-factors for the ligand-mediated activity of the insect ecdysteroid receptor in yeast. J. Mol. Endocrinol. 27, 191–209 (2001).

    CAS  PubMed  Google Scholar 

  10. Katzenellenbogen, B.S. et al. Hormone binding and transcription activation by estrogen receptors: analyses using mammalian and yeast systems. J. Steroid Biochem. Mol. Biol. 47, 39–48 (1993).

    CAS  PubMed  Google Scholar 

  11. Liu, J.W., Jeannin, E. & Picard, D. The anti-estrogen hydroxytamoxifen is a potent antagonist in a novel yeast system. Biol. Chem. 380, 1341–1345 (1999).

    CAS  PubMed  Google Scholar 

  12. Lyttle, C.R., Damian-Matsumura, P., Juul, H. & Butt, T.R. Human estrogen receptor regulation in a yeast model system and studies on receptor agonists and antagonists. J. Steroid Biochem. Mol. Biol. 42, 677–685 (1992).

    CAS  PubMed  Google Scholar 

  13. McDonnell, D.P., Nawaz, Z. & O'Malley, B.W. In situ distinction between steroid receptor binding and transactivation at a target gene. Mol. Cell. Biol. 11, 4350–4355 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wrenn, C.K. & Katzenellenbogen, B.S. Structure–function analysis of the hormone binding domain of the human estrogen receptor by region-specific mutagenesis and phenotypic screening in yeast. J. Biol. Chem. 268, 24089–24098 (1993).

    CAS  PubMed  Google Scholar 

  15. Beck, V., Pfitscher, A. & Jungbauer, A. GFP-reporter for a high throughput assay to monitor estrogenic compounds. J. Biochem. Biophys. Methods 64, 19–37 (2005).

    CAS  PubMed  Google Scholar 

  16. Bovee, T.F. et al. Development of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein. Gene 325, 187–200 (2004).

    CAS  PubMed  Google Scholar 

  17. Bovee, T.F., Helsdingen, R.J., Rietjens, I.M., Keijer, J. & Hoogenboom, R.L. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types. J. Steroid Biochem. Mol. Biol. 91, 99–109 (2004).

    CAS  PubMed  Google Scholar 

  18. Fox, J.E., Bridgham, J.T., Bovee, T.F. & Thornton, J.W. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome. Yeast 24, 379–390 (2007).

    CAS  PubMed  Google Scholar 

  19. Michelini, E., Leskinen, P., Virta, M., Karp, M. & Roda, A. A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Biosens. Bioelectron. 20, 2261–2267 (2005).

    CAS  PubMed  Google Scholar 

  20. Gaido, K.W. et al. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 143, 205–212 (1997).

    CAS  PubMed  Google Scholar 

  21. Georgiakaki, M. et al. Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription. Mol. Endocrinol. 20, 2122–2140 (2006).

    CAS  PubMed  Google Scholar 

  22. Knutti, D., Kaul, A. & Kralli, A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 20, 2411–2422 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheeler, C.Q., Dudley, M.W. & Khan, S.A. Environmental estrogens induce transcriptionally active estrogen receptor dimers in yeast: activity potentiated by the coactivator RIP140. Environ. Health Perspect. 108, 97–103 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Balmelli-Gallacchi, P. et al. A yeast-based bioassay for the determination of functional and non-functional estrogen receptors. Nucleic Acids Res. 27, 1875–1881 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bovee, T.F., Bor, G., Heskamp, H.H., Hoogenboom, R.L. & Nielen, M.W. Validation and application of a robust yeast estrogen bioassay for the screening of estrogenic activity in animal feed. Food Addit. Contam. 23, 556–568 (2006).

    CAS  PubMed  Google Scholar 

  26. Escher, B.I. et al. Screening test battery for pharmaceuticals in urine and wastewater. Environ. Toxicol. Chem. 24, 750–758 (2005).

    CAS  PubMed  Google Scholar 

  27. Carver, L.A., Jackiw, V. & Bradfield, C.A. The 90-kDa heat shock protein is essential for Ah receptor signaling in a yeast expression system. J. Biol. Chem. 269, 30109–30112 (1994).

    CAS  PubMed  Google Scholar 

  28. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  29. Yao, G., Craven, M., Drinkwater, N. & Bradfield, C.A. Interaction networks in yeast define and enumerate the signaling steps of the vertebrate aryl hydrocarbon receptor. PLoS Biol. 2, E65 (2004).

    PubMed  PubMed Central  Google Scholar 

  30. Kippert, F. A rapid permeabilization procedure for accurate quantitative determination of beta-galactosidase activity in yeast cells. FEMS Microbiol. Lett. 128, 201–206 (1995).

    CAS  PubMed  Google Scholar 

  31. Amberg, D., Burke, D. & Strathern, J. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual 2005 edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2005).

    Google Scholar 

  32. Picard, D. Nuclear Receptors: A Practical Approach (Oxford University Press, Oxford, UK, 1999).

    Google Scholar 

  33. Collins, B.M., McLachlan, J.A. & Arnold, S.F. The estrogenic and antiestrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids 62, 365–372 (1997).

    CAS  PubMed  Google Scholar 

  34. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

  35. Adachi, J. et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276, 31475–31478 (2001).

    CAS  PubMed  Google Scholar 

  36. Alnafisi, A., Hughes, J., Wang, G. & Miller, C.A. Evaluating polycyclic aromatic hydrocarbons using a yeast bioassay. Environ. Toxicol. Chem. 26, 1333–1339 (2007).

    CAS  PubMed  Google Scholar 

  37. Chou, P.H., Matsui, S., Misaki, K. & Matsuda, T. Isolation and identification of xenobiotic aryl hydrocarbon receptor ligands in dyeing wastewater. Environ. Sci. Technol. 41, 652–657 (2007).

    CAS  PubMed  Google Scholar 

  38. Chou, P.H., Matsui, S. & Matsuda, T. Detection and identification of dyes showing AhR-binding affinity in treated sewage effluents. Water Sci. Technol. 53, 35–42 (2006).

    CAS  PubMed  Google Scholar 

  39. Lee, B.C., Shimizu, Y., Matsuda, T. & Matsui, S. Characterization of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in deposited road particles (DRPs) from Lake Biwa area, Japan. Environ. Sci. Technol. 39, 7402–7409 (2005).

    CAS  PubMed  Google Scholar 

  40. Saeki, K. et al. Activation of the human Ah receptor by aza-polycyclic aromatic hydrocarbons and their halogenated derivatives. Biol. Pharm. Bull. 26, 448–452 (2003).

    CAS  PubMed  Google Scholar 

  41. Kato, T.A., Matsuda, T., Matsui, S., Mizutani, T. & Saeki, K. Activation of the aryl hydrocarbon receptor by methyl yellow and related congeners: structure–activity relationships in halogenated derivatives. Biol. Pharm. Bull. 25, 466–471 (2002).

    CAS  PubMed  Google Scholar 

  42. Cox, M.B. & Miller, C.A. III Pharmacological and genetic analysis of 90-kDa heat shock isoprotein–aryl hydrocarbon receptor complexes. Mol. Pharmacol. 64, 1549–1556 (2003).

    CAS  PubMed  Google Scholar 

  43. Cox, M.B. & Miller, C.A. III Cooperation of heat shock protein 90 and p23 in aryl hydrocarbon receptor signaling. Cell Stress Chaperones 9, 4–20 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, C.A. Two tetratricopeptide repeat proteins facilitate human aryl hydrocarbon receptor signalling in yeast. Cell. Signal. 14, 615–623 (2002).

    CAS  PubMed  Google Scholar 

  45. Lee, H.J., Lee, Y.S., Kwon, H.B. & Lee, K. Novel yeast bioassay system for detection of androgenic and antiandrogenic compounds. Toxicol. In Vitro 17, 237–244 (2003).

    CAS  PubMed  Google Scholar 

  46. Sohoni, P. & Sumpter, J.P. Several environmental oestrogens are also anti-androgens. J. Endocrinol. 158, 327–339 (1998).

    CAS  PubMed  Google Scholar 

  47. Kirk, L.A., Tyler, C.R., Lye, C.M. & Sumpter, J.P. Changes in estrogenic and androgenic activities at different stages of treatment in wastewater treatment works. Environ. Toxicol. Chem. 21, 972–979 (2002).

    CAS  PubMed  Google Scholar 

  48. Sohoni, P., Lefevre, P.A., Ashby, J. & Sumpter, J.P. Possible androgenic/anti-androgenic activity of the insecticide fenitrothion. J. Appl. Toxicol. 21, 173–178 (2001).

    CAS  PubMed  Google Scholar 

  49. Beck, V., Unterrieder, E., Krenn, L., Kubelka, W. & Jungbauer, A. Comparison of hormonal activity (estrogen, androgen and progestin) of standardized plant extracts for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol. 84, 259–268 (2003).

    CAS  PubMed  Google Scholar 

  50. Hsiao, P.W., Thin, T.H., Lin, D.L. & Chang, C. Differential regulation of testosterone vs. 5alpha-dihydrotestosterone by selective androgen response elements. Mol. Cell. Biochem. 206, 169–175 (2000).

    CAS  PubMed  Google Scholar 

  51. Rao, J. et al. Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J. Biol. Chem. 276, 5814–5820 (2001).

    CAS  PubMed  Google Scholar 

  52. Hu, R., Niles, E.G. & LoVerde, P.T. DNA binding and transactivation properties of the Schistosoma mansoni constitutive androstane receptor homologue. Mol. Biochem. Parasitol. 150, 174–185 (2006).

    CAS  PubMed  Google Scholar 

  53. Jyrkkarinne, J. et al. Amino acids important for ligand specificity of the human constitutive androstane receptor. J. Biol. Chem. 280, 5960–5971 (2005).

    PubMed  Google Scholar 

  54. Makinen, J. et al. Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol. Pharmacol. 62, 366–378 (2002).

    CAS  PubMed  Google Scholar 

  55. Forman, B.M. et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature 395, 612–615 (1998).

    CAS  PubMed  Google Scholar 

  56. Dela Cruz, F.E., Kirsch, D.R. & Heinrich, J.N. Transcriptional activity of Drosophila melanogaster ecdysone receptor isoforms and ultraspiracle in Saccharomyces cerevisiae. J. Mol. Endocrinol. 24, 183–191 (2000).

    CAS  PubMed  Google Scholar 

  57. Jungbauer, A. & Beck, V. Yeast reporter system for rapid determination of estrogenic activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 777, 167–178 (2002).

    CAS  PubMed  Google Scholar 

  58. Graumann, K. & Jungbauer, A. Agonistic and synergistic activity of tamoxifen in a yeast model system. Biochem. Pharmacol. 59, 177–185 (2000).

    CAS  PubMed  Google Scholar 

  59. Pinto, B., Picard, D. & Reali, D. A recombinant yeast strain as a short term bioassay to assess estrogen-like activity of xenobiotics. Ann. Ig. 16, 579–585 (2004).

    CAS  PubMed  Google Scholar 

  60. Taneda, S. et al. Anti-estrogenic activity of diesel exhaust particles. Biol. Pharm. Bull. 23, 1477–1480 (2000).

    CAS  PubMed  Google Scholar 

  61. Promberger, A., Dornstauder, E., Fruhwirth, C., Schmid, E.R. & Jungbauer, A. Determination of estrogenic activity in beer by biological and chemical means. J. Agric. Food Chem. 49, 633–640 (2001).

    CAS  PubMed  Google Scholar 

  62. Klinge, C.M. et al. Estrogenic activity in white and red wine extracts. J. Agric. Food Chem. 51, 1850–1857 (2003).

    CAS  PubMed  Google Scholar 

  63. Nakari, T. & Pessala, P. In vitro estrogenicity of polybrominated flame retardants. Aquat. Toxicol. 74, 272–279 (2005).

    CAS  PubMed  Google Scholar 

  64. Hasenbrink, G., Sievernich, A., Wildt, L., Ludwig, J. & Lichtenberg-Frate, H. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors. FASEB J. 20, 1552–1554 (2006).

    CAS  PubMed  Google Scholar 

  65. McDonnell, D.P., Vegeto, E. & O'Malley, B.W. Identification of a negative regulatory function for steroid receptors. Proc. Natl. Acad. Sci. USA 89, 10563–10567 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mahe, Y., Lemoine, Y. & Kuchler, K. The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J. Biol. Chem. 271, 25167–25172 (1996).

    CAS  PubMed  Google Scholar 

  67. Chen, Z., Katzenellenbogen, B.S., Katzenellenbogen, J.A. & Zhao, H. Directed evolution of human estrogen receptor variants with significantly enhanced androgen specificity and affinity. J. Biol. Chem. 279, 33855–33864 (2004).

    CAS  PubMed  Google Scholar 

  68. Graumann, K. et al. Structural and functional analysis of N-terminal point mutants of the human estrogen receptor. J. Steroid Biochem. Mol. Biol. 57, 293–300 (1996).

    CAS  PubMed  Google Scholar 

  69. Joyeux, A., Cavailles, V., Balaguer, P. & Nicolas, J.C. RIP 140 enhances nuclear receptor-dependent transcription in vivo in yeast. Mol. Endocrinol. 11, 193–202 (1997).

    CAS  PubMed  Google Scholar 

  70. Jisa, E. et al. Transcriptional activities of estrogen receptor alpha and beta in yeast properties of raloxifene. Biochem. Pharmacol. 62, 953–961 (2001).

    CAS  PubMed  Google Scholar 

  71. Wright, A.P., Carlstedt-Duke, J. & Gustafsson, J.A. Ligand-specific transactivation of gene expression by a derivative of the human glucocorticoid receptor expressed in yeast. J. Biol. Chem. 265, 14763–14769 (1990).

    CAS  PubMed  Google Scholar 

  72. Wright, A.P. & Gustafsson, J.A. Glucocorticoid-specific gene activation by the intact human glucocorticoid receptor expressed in yeast. Glucocorticoid specificity depends on low level receptor expression. J. Biol. Chem. 267, 11191–11195 (1992).

    CAS  PubMed  Google Scholar 

  73. Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–168 (1990).

    CAS  PubMed  Google Scholar 

  74. Garabedian, M.J. & Yamamoto, K.R. Genetic dissection of the signaling domain of a mammalian steroid receptor in yeast. Mol. Biol. Cell 3, 1245–1257 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hong, H., Kohli, K., Trivedi, A., Johnson, D.L. & Stallcup, M.R. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93, 4948–4952 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Riggs, D.L. et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J. 22, 1158–1167 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong, H., Kohli, K., Garabedian, M.J. & Stallcup, M.R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17, 2735–2744 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fankhauser, C.P., Briand, P.A. & Picard, D. The hormone binding domain of the mineralocorticoid receptor can regulate heterologous activities in cis. Biochem. Biophys. Res. Commun. 200, 195–201 (1994).

    CAS  PubMed  Google Scholar 

  79. Marcus, S.L., Miyata, K.S., Rachubinski, R.A. & Capone, J.P. Transactivation by PPAR/RXR heterodimers in yeast is potentiated by exogenous fatty acid via a pathway requiring intact peroxisomes. Gene Expr. 4, 227–239 (1995).

    CAS  PubMed  Google Scholar 

  80. Atkins, G.B. et al. Coactivators for the orphan nuclear receptor RORalpha. Mol. Endocrinol. 13, 1550–1557 (1999).

    CAS  PubMed  Google Scholar 

  81. Kassam, A., Hunter, J., Rachubinski, R.A. & Capone, J.P. Subtype- and response element-dependent differences in transactivation by peroxisome proliferator-activated receptors alpha and gamma. Mol. Cell. Endocrinol. 141, 153–162 (1998).

    CAS  PubMed  Google Scholar 

  82. Henry, K., O'Brien, M.L., Clevenger, W., Jow, L. & Noonan, D.J. Peroxisome proliferator-activated receptor response specificities as defined in yeast and mammalian cell transcription assays. Toxicol. Appl. Pharmacol. 132, 317–324 (1995).

    CAS  PubMed  Google Scholar 

  83. Poletti, A. et al. A novel, highly regulated, rapidly inducible system for the expression of chicken progesterone receptor, cPRA, in Saccharomyces cerevisiae. Gene 114, 51–58 (1992).

    CAS  PubMed  Google Scholar 

  84. Mak, P., McDonnell, D.P., Weigel, N.L., Schrader, W.T. & O'Malley, B.W. Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). J. Biol. Chem. 264, 21613–21618 (1989).

    CAS  PubMed  Google Scholar 

  85. Klotz, D.M., Ladlie, B.L., Vonier, P.M., McLachlan, J.A. & Arnold, S.F. o,p′-DDT and its metabolites inhibit progesterone-dependent responses in yeast and human cells. Mol. Cell. Endocrinol. 129, 63–71 (1997).

    CAS  PubMed  Google Scholar 

  86. Masuyama, H., Hiramatsu, Y., Kunitomi, M., Kudo, T. & MacDonald, P.N. Endocrine disrupting chemicals, phthalic acid and nonylphenol, activate Pregnane X receptor-mediated transcription. Mol. Endocrinol. 14, 421–428 (2000).

    CAS  PubMed  Google Scholar 

  87. Holley, S.J. & Yamamoto, K.R. A role for Hsp90 in retinoid receptor signal transduction. Mol. Biol. Cell 6, 1833–1842 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mak, P., Fuernkranz, H.A., Ge, R. & Karathanasis, S.K. Retinoid X receptor homodimers function as transcriptional activators in yeast. Gene 145, 129–133 (1994).

    CAS  PubMed  Google Scholar 

  89. Freeman, B.C., Felts, S.J., Toft, D.O. & Yamamoto, K.R. The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev. 14, 422–434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kakizawa, T. et al. Ligand-dependent heterodimerization of thyroid hormone receptor and retinoid X receptor. J. Biol. Chem. 272, 23799–23804 (1997).

    CAS  PubMed  Google Scholar 

  91. Johnson, D.R., Li, C.W., Chen, L.Y., Ghosh, J.C. & Chen, J.D. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT). Mol. Pharmacol. 69, 99–108 (2006).

    CAS  PubMed  Google Scholar 

  92. Treuter, E., Albrektsen, T., Johansson, L., Leers, J. & Gustafsson, J.A. A regulatory role for RIP140 in nuclear receptor activation. Mol. Endocrinol. 12, 864–881 (1998).

    CAS  PubMed  Google Scholar 

  93. Berghofer-Hochheimer, Y., Zurek, C., Langer, G. & Munder, T. Expression of the vitamin D and the retinoid X receptors in Saccharomyces cerevisiae: alternative in vivo models for ligand-induced transactivation. J. Cell. Biochem. 66, 184–196 (1997).

    CAS  PubMed  Google Scholar 

  94. Zhao, X.Y., Eccleshall, T.R., Krishnan, A.V., Gross, C. & Feldman, D. Analysis of vitamin D analog-induced heterodimerization of vitamin D receptor with retinoid X receptor using the yeast two-hybrid system. Mol. Endocrinol. 11, 366–378 (1997).

    CAS  PubMed  Google Scholar 

  95. Takeyama, K. et al. Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. Mol. Cell. Biol. 19, 1049–1055 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kephart, D.D., Walfish, P.G., DeLuca, H. & Butt, T.R. Retinoid X receptor isotype identity directs human vitamin D receptor heterodimer transactivation from the 24-hydroxylase vitamin D response elements in yeast. Mol. Endocrinol. 10, 408–419 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A Miller III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J., Burow, M., McLachlan, J. et al. Detecting ligands and dissecting nuclear receptor-signaling pathways using recombinant strains of the yeast Saccharomyces cerevisiae. Nat Protoc 3, 637–645 (2008). https://doi.org/10.1038/nprot.2008.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.33

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing