Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation

Abstract

Synchronization of cells and nuclei is a powerful technique for the exact study of regulatory mechanisms and for understanding cell cycle events. Counterflow centrifugal elutriation is a biophysical cell separation technique in which cell size and sedimentation density differences of living cells are exploited to isolate subpopulations in various stages of cell cycle. Here, a protocol is described for the separation of phase-enriched subpopulations from exponentially growing Chinese hamster ovary cells at high-resolution power of elutriation. The efficiency of elutriation is confirmed by measuring the DNA content fluorimetrically and by flow cytometry. The resolution power of elutriation is demonstrated by the ability to fractionate nuclei of murine pre-B cells. The installation and elutriation by collecting 16–30 synchronized fractions, including particle size analysis, can be achieved in 4–5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of cell synchronization by centrifugal elutriation.
Figure 2: Counterflow centrifugal elutriation in the JE-6 elutriator rotor.
Figure 3: Synchronization of CHO cells at high resolution of centrifugal elutriation.
Figure 4: Size analysis of synchronized nuclei isolated from murine pre-B cells.

Similar content being viewed by others

References

  1. Uzbekov, R.E. Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochemistry 69, 485–496 (2004).

    CAS  PubMed  Google Scholar 

  2. Griffin, M.J. Synchronization of some human cell strains by serum and calcium starvation. In Vitro 12, 393–398 (1976).

    Article  CAS  Google Scholar 

  3. Tobey, R.A., Oishi, N. & Crissman, H.A. Cell cycle synchronization: Reversible induction of G2 synchrony in cultured rodent and human diploid fibroblasts. Proc. Natl Acad. Sci. USA 87, 5104–5108 (1990).

    Article  CAS  Google Scholar 

  4. Holley, R.W. & Kiernan, M.A. 'Contact inhibition' of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60, 300–304 (1968).

    Article  CAS  Google Scholar 

  5. Pardee, A.B. & Keyomarsi, K. Modification of cell proliferation with inhibitors. Curr. Opin. Cell Biol. 4, 186–191 (1992).

    Article  CAS  Google Scholar 

  6. Tobey, RA. & Crissman, H.A. Use of flowmicrofluorimetry in detailed analysis of effects of chemical agents on cell cycle progression. Cancer Res. 32, 2726–2732 (1972).

    CAS  PubMed  Google Scholar 

  7. Vogel, W., Schempp, W. & Sigwarth, I. Comparison of thymidine, fluorodeoxyuridine, hydroxyurea, and methotrexate blocking at the G1/S phase transition of the cell cycle, studied by replication patterns. Hum. Genet. 45, 193–198 (1978).

    Article  CAS  Google Scholar 

  8. Fox, M.H., Read, R.A. & Bedford, J.S. Comparison of synchronized Chinese hamster ovary cells obtained by mitotic shake-off, hydroxyurea, aphidicolin, or methotrexate. Cytometry 8, 315–320 (1987).

    Article  CAS  Google Scholar 

  9. Matherly, L.H., Schuetz, J.D., Westin, E. & Goldman, I.D. A method for the synchronization of cultured cells with aphidicolin: application to the large-scale synchronization of L1210 cells and the study of the cell cycle regulation of thymidylate synthase and dihydrofolate reductase. Anal. Biochem. 182, 338–345 (1989).

    Article  CAS  Google Scholar 

  10. Kumagai-Sano, F., Hayashi, T., Sano, T. & Hasezawa, S. Cell cycle synchronization of tobacco BY-2 cells. Nat. Protoc. 1, 2621–2627 (2006).

    Article  CAS  Google Scholar 

  11. Robbins, E. & Marcus, P.I. Mitotically synchronized mammalian cells: a simple method for obtaining large populations. Science 144, 1152–1153 (1964).

    Article  CAS  Google Scholar 

  12. Cohen, L.S. & Studzinski, G.P. Correlation between cell enlargement and nucleic acid and protein content of HeLa cells in unbalanced growth produced by inhibitors of DNA synthesis. J. Cell Physiol. 69, 331–339 (1967).

    Article  CAS  Google Scholar 

  13. Terasima, T. & Tolmach, L.J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp. Cell Res. 30, 344–362 (1963).

    Article  CAS  Google Scholar 

  14. Urbani, L., Sherwood, S.W. & Schimke, R.T. Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp. Cell Res. 219, 159–166 (1995).

    Article  CAS  Google Scholar 

  15. Sloot, P.M.A., van der Donk, E.H.M. & Figdor, C.G. Computer assisted centrifugal elutriation II: Multiparametric statistical analysis. Comp. Meth. Progr. Biomed. 37–46 (1988).

  16. Mitchell, B.F. & Tupper, J.T. Synchronization of mouse 3T3 and SV40 3T3 cell by way of centrifugal elutriation. Exp. Cell Res. 106, 351–355 (1977).

    Article  CAS  Google Scholar 

  17. Oredsson, S.M., Gray, J.W. & Marton, L.J. Progressive increase in polyamine levels in 9L cells in vitro during the cell cycle: comparison between cells isolated by centrifugal elutriation and cells grown in synchrony. Cell Tissue Kinet. 17, 437–444 (1984).

    CAS  PubMed  Google Scholar 

  18. Cymerman, U. & Beer, J.B. Some problems in using density gradient centrifugation for synchronization of L5178Y-S cells. Neoplasma 27, 429–436 (1980).

    CAS  PubMed  Google Scholar 

  19. Guidozzi, F. Enrichment of ovarian cancer cell suspensions by centrifugal elutriation after density gradient purification. Int. J. Gynecol. Cancer 7, 100–105 (1997).

    Article  Google Scholar 

  20. de Carvalho, C.M. et al. Evaluation of elutriation and magnetic microbead purification of canine monocytes. Vet. Immunol. Immunopathol. 101, 171–178 (2004).

    Article  CAS  Google Scholar 

  21. Grdina, D.J., Meistrich, M.L., Meyn, R.E., Johnson, T.S. & White, R.A. Cell synchrony techniques. I. A comparison of methods. Cell Tissue Kinet. 17, 223–236 (1984).

    CAS  PubMed  Google Scholar 

  22. Rice, G.C., Dean, P.N., Gray, J.W. & Dewey, W.C. An ultra-pure in vitro phase synchrony method employing centrifugal elutriation and viable flow cytometric cell sorting. Cytometry 5, 289–298 (1984).

    Article  CAS  Google Scholar 

  23. Banfalvi, G., Nagy, G., Gacsi, M., Roszer, T. & Basnakian, A. Common pathway of chromatin condensation in mammalian cells. DNA Cell Biol. 25, 295–301 (2006).

    Article  CAS  Google Scholar 

  24. Rehak, M., Csuka, I., Szepessy, E. & Banfalvi, G. Subphases of DNA replication in Drosophila cells. DNA Cell Biol. 19, 607–612 (2000).

    Article  CAS  Google Scholar 

  25. Banfalvi, G. Structure of interphase chromosomes in the nuclei of Drosophila cells. DNA Cell Biol. 25, 547–553 (2006).

    Article  CAS  Google Scholar 

  26. Lindahl, P.E. Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161, 648–649 (1948).

    Article  CAS  Google Scholar 

  27. Lindahl, P.E. On counter streaming centrifugation in the separation of cells and cell fragments. Biochim. Biophys. Acta. 21, 411–415 (1956).

    Article  CAS  Google Scholar 

  28. Sanderson, R.J., Bird, K.E., Palmer, N.F. & Brenman, J. Design principles for a counterflow centrifugation cell separation chamber. Appendix: a derivation of the equation of motion of a particle under combined centrifugal and hydrodynamic fields. Anal. Biochem. 71, 615–622 (1976).

    Article  CAS  Google Scholar 

  29. Meistrich, M.L. Experimental factors involved in separation by centrifugal elutriation. in Cell Separation Vol. 2. (eds. Pretlow, T.G. II. & Pretlow, T.P.) 33–61 (Academic Press, New York, 1983).

    Chapter  Google Scholar 

  30. Kauffman, M.G., Noga, S.J., Kelly, T.J. & Donnenberg, A.D. Isolation of cell cycle fractions by counterflow centrifugal elutriation. Anal. Biochem. 191, 41–46 (1990).

    Article  CAS  Google Scholar 

  31. Bauer, J. Advances in cell separation: recent developments in counterflow centrifugal elutriation and continuous flow cell separation. J. Chromatogr. B. Biomed. Sci. Appl. 722, 55–69 (1999).

    Article  CAS  Google Scholar 

  32. Chianéa, T., Assidjo, N.E. & Cardot, P.J.P. Sedimentation field-flow-fractionation: emergence of a new cell separation methodology. Talanta 51, 835–847 (2000).

    Article  Google Scholar 

  33. Dorin, M. Developing elutriation protocols. Technical Paper T-1785A. Beckman Instruments Inc., Fullerton, California, (1994).

  34. Barford, J.P. A mathematical model for cell separation technique of centrifugal elutration. Biotechnol. Bioeng. 38, 570–577 (1986).

    Article  Google Scholar 

  35. Stokes, G.G, On the effect of the internal friction of fluids on the motion of pendulums. Cambridge Philos. Trans. 9, 8–106 (1851).

    Google Scholar 

  36. Offer, H. et al. p53 modulates base excision repair activity in a cell cycle specific manner following genotoxic stress. Cancer Res. 61, 88–96 (2001).

    CAS  PubMed  Google Scholar 

  37. Kaufmann, W.K. & Wilson, S.J. DNA repair endonuclease activity during synchronous growth of diploid human fibroblasts. Mutation Res. 236, 107–117 (1990).

    Article  CAS  Google Scholar 

  38. Banfalvi, G. et al. Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized CHO cells. Eur. J. Biochem. 267, 6580–6585 (2000).

    Article  CAS  Google Scholar 

  39. Coulter, W.H. High speed automatic blood cell counter and cell size analyzer. Proc. Natl. Electron. Conf. 12, 1034–1040 (1957).

    Google Scholar 

  40. Riccardi, C. & Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  41. Doleel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).

    Article  Google Scholar 

  42. Terry, N.H.A. & White, R.A. Flow cytometry after bromodeoxyuridine labeling to measure S and G2.M phase durations plus doubling times in vitro and in vivo. Nat. Protoc. 1, 859–869 (2006).

    Article  CAS  Google Scholar 

  43. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  Google Scholar 

  44. Schmid, I., Uittenbogaart, C. & Jamieson, B.D. Live-cell assay for detection of apoptosis by dual-laser flow cytometry using Hoechst 33342 and 7-amino-actinomycin D. Nat. Protoc. 1, 187–190 (2006).

    Google Scholar 

  45. Mukhopadhyay, P. et al. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat. Protoc. 2, 2295–2301 (2007).

    Article  CAS  Google Scholar 

  46. Ferlini, C. & Scambia, G. Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nat. Protoc. 2, 3111–3114 (2007).

    Article  CAS  Google Scholar 

  47. van Genderen, H. et al. In vitro measurement of cell death with the annexin A5 affinity assay. Nat. Protoc. 1, 363–367 (2006).

    Article  CAS  Google Scholar 

  48. Troiano, L. et al. Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2, 2719–2727 (2007).

    Article  CAS  Google Scholar 

  49. Quah, B.J.C., Warren, H.S. & Parish, C.R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2, 2049–2056 (2007).

    Article  CAS  Google Scholar 

  50. Chattopadhyay, P.K., Yu, J. & Roederer, M. Live-cell assay to detect antigen-specific CD4+ T-cell responses by CD154 expression. Nat. Protoc. 1, 1–6 (2006).

    Article  CAS  Google Scholar 

  51. Pittet, M.J., Swirski, F.K., Reynolds, F., Josephson, L. & Weissleder, R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat. Protoc. 1, 73–79 (2006).

    Article  CAS  Google Scholar 

  52. Basnakian, A., Banfalvi, G. & Sarkar, N. Contribution of DNA polymerase delta to DNA replication in permeable CHO cells synchronized in S phase. Nucleic Acids Res. 17, 4757–4767 (1989).

    Article  CAS  Google Scholar 

  53. Banfalvi, G. et al. Cell culture dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B cells. Apoptosis 12, 1219–1228 (2007).

    Article  CAS  Google Scholar 

  54. Munyard, K.A. & Baker, S.K. Size fractionation of a rumen microbial population by countercurrent centrifugal elutriation. J. Microb. Meth. 67, 3566–3573 (2006).

    Article  Google Scholar 

  55. Szepessy, E. et al. Multiple subphases of DNA repair and poly(ADP-ribose) synthesis in Chinese hamster ovary (CHO-K1) cells. Eur. J. Cell Biol. 82, 201–207 (2003).

    Article  CAS  Google Scholar 

  56. Barker, S., Murray, D., Zheng, J., Li, L. & Weinfeld, M. A method for the isolation of covalent DNA–protein crosslinks suitable for proteomics analysis. Anal. Biochem. 344, 204–215 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research related to elutriation was supported by the OTKA grant T042762 (G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfalvi, G. Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat Protoc 3, 663–673 (2008). https://doi.org/10.1038/nprot.2008.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.34

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing