Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin

Abstract

This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of protein imaging with BirA and streptavidin.
Figure 2: Monovalent streptavidin structure and purification.
Figure 3: Specificity of cell surface labeling with BirA and streptavidin.
Figure 4: Monovalent streptavidin expression and purification.

Similar content being viewed by others

References

  1. Marks, K.M. & Nolan, G.P. Chemical labeling strategies for cell biology. Nat. Methods 3, 591–596 (2006).

    Article  CAS  Google Scholar 

  2. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  Google Scholar 

  3. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    Article  CAS  Google Scholar 

  4. Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 3, 267–273 (2006).

    Article  CAS  Google Scholar 

  5. van Werven, F.J. & Timmers, H.T. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation. Nucleic Acids Res. 34, e33 (2006).

    Article  Google Scholar 

  6. Beckett, D., Kovaleva, E. & Schatz, P.J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  Google Scholar 

  7. Bates, I.R. et al. Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys. J. 91, 1046–1058 (2006).

    Article  CAS  Google Scholar 

  8. Edgar, R. et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 103, 4841–4845 (2006).

    Article  CAS  Google Scholar 

  9. Athavankar, S. & Peterson, B.R. Control of gene expression with small molecules: biotin-mediated acylation of targeted lysine residues in recombinant yeast. Chem. Biol. 10, 1245–1253 (2003).

    Article  CAS  Google Scholar 

  10. Yang, J., Jaramillo, A., Shi, R., Kwok, W.W. & Mohanakumar, T. In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum. Immunol. 65, 692–699 (2004).

    Article  CAS  Google Scholar 

  11. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  Google Scholar 

  12. Parrott, M.B. & Barry, M.A. Metabolic biotinylation of secreted and cell surface proteins from mammalian cells. Biochem. Biophys. Res. Commun. 281, 993–1000 (2001).

    Article  CAS  Google Scholar 

  13. Barat, B. & Wu, A.M. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol. Eng. 24, 283–291 (2007).

    Article  CAS  Google Scholar 

  14. Nesbeth, D. et al. Metabolic biotinylation of lentiviral pseudotypes for scalable paramagnetic microparticle-dependent manipulation. Mol. Ther. 13, 814–822 (2006).

    Article  CAS  Google Scholar 

  15. Grosveld, F. et al. Isolation and characterization of hematopoietic transcription factor complexes by in vivo biotinylation tagging and mass spectrometry. Ann. NY Acad. Sci. 1054, 55–67 (2005).

    Article  CAS  Google Scholar 

  16. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Article  CAS  Google Scholar 

  17. Green, N.M. Avidin and streptavidin. Meth. Enzymol. 184, 51–67 (1990).

    Article  CAS  Google Scholar 

  18. Tannous, B.A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat. Methods 3, 391–396 (2006).

    Article  CAS  Google Scholar 

  19. Chattopadhaya, S., Tan, L.P. & Yao, S.Q. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat. Protoc. 1, 2386–2398 (2006).

    Article  CAS  Google Scholar 

  20. Klemm, J.D., Schreiber, S.L. & Crabtree, G.R. Dimerization as a regulatory mechanism in signal transduction. Annu. Rev. Immunol. 16, 569–592 (1998).

    Article  CAS  Google Scholar 

  21. Iino, R., Koyama, I. & Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677 (2001).

    Article  CAS  Google Scholar 

  22. Saxton, M.J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  23. Schwesinger, F. et al. Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 97, 9972–9977 (2000).

    Article  CAS  Google Scholar 

  24. Wu, S.C. & Wong, S.L. Engineering soluble monomeric streptavidin with reversible biotin binding capability. J. Biol. Chem. 280, 23225–23231 (2005).

    Article  CAS  Google Scholar 

  25. Qureshi, M.H. & Wong, S.L. Design, production, and characterization of a monomeric streptavidin and its application for affinity purification of biotinylated proteins. Protein Expr. Purif. 25, 409–415 (2002).

    Article  CAS  Google Scholar 

  26. Laitinen, O.H. et al. Rational design of an active avidin monomer. J. Biol. Chem. 278, 4010–4014 (2003).

    Article  CAS  Google Scholar 

  27. Muzykantov, V.R., Smirnov, M.D. & Samokhin, G.P. Avidin-induced lysis of biotinylated erythrocytes by homologous complement via the alternative pathway depends on avidin's ability of multipoint binding with biotinylated membrane. Biochim. Biophys. Acta. 1107, 119–125 (1992).

    Article  CAS  Google Scholar 

  28. Niemeyer, C.M. Bioorganic applications of semisynthetic DNA-protein conjugates. Chemistry 7, 3188–3195 (2001).

    Article  CAS  Google Scholar 

  29. Keren, K., Berman, R.S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  30. Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).

    Article  Google Scholar 

  31. Marttila, A.T. et al. Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett. 467, 31–36 (2000).

    Article  CAS  Google Scholar 

  32. Nordlund, H.R., Hytonen, V.P., Laitinen, O.H. & Kulomaa, M.S. Novel avidin-like protein from a root nodule symbiotic bacterium, Bradyrhizobium japonicum. J. Biol. Chem. 280, 13250–13255 (2005).

    Article  CAS  Google Scholar 

  33. Coleman, T.M. & Huang, F. RNA-catalyzed thioester synthesis. Chem. Biol. 9, 1227–1236 (2002).

    Article  CAS  Google Scholar 

  34. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  Google Scholar 

  35. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  36. Gama, L. & Breitwieser, G.E. Generation of epitope-tagged proteins by inverse polymerase chain reaction mutagenesis. Methods Mol. Biol. 182, 77–83 (2002).

    CAS  PubMed  Google Scholar 

  37. Rathbone, M.P. et al. Trophic effects of purines in neurons and glial cells. Prog. Neurobiol. 59, 663–690 (1999).

    Article  CAS  Google Scholar 

  38. Burnstock, G. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 64, 1471–1483 (2007).

    Article  CAS  Google Scholar 

  39. Chapman-Smith, A. & Cronan, J.E. Jr. In vivo enzymatic protein biotinylation. Biomol. Eng. 16, 119–125 (1999).

    Article  CAS  Google Scholar 

  40. Xu, Y. & Beckett, D. Kinetics of biotinyl-5′-adenylate synthesis catalyzed by the Escherichia coli repressor of biotin biosynthesis and the stability of the enzyme-product complex. Biochemistry 33, 7354–7360 (1994).

    Article  CAS  Google Scholar 

  41. Green, N.M. & Melamed, M.D. Optical rotatory dispersion, circular dichroism and far-ultraviolet spectra of avidin and streptavidin. Biochem. J. 100, 614–621 (1966).

    Article  CAS  Google Scholar 

  42. Bayer, E.A., Ehrlich-Rogozinski, S. & Wilchek, M. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin. Electrophoresis 17, 1319–1324 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all past and current members of the Ting lab who have contributed to methods described here, particularly Marta Fernandez Suarez for cloning pET21a-BirA and Yi Zheng for supplying Figure 4b. Funding was provided by the National Institutes of Health (R01 GM072670-01 and P20 GM072029-01), the McKnight Foundation, the Dreyfus Foundation and the Massachusetts Institute of Technology. M.H. was supported by a Computational and Systems Biology Initiative MIT-Merck postdoctoral fellowship. We thank Tanabe USA for biotin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Howarth or Alice Y Ting.

Ethics declarations

Competing interests

We have submitted patent applications on the technologies described in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, M., Ting, A. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3, 534–545 (2008). https://doi.org/10.1038/nprot.2008.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.20

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing