Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Positional cloning by fast-track SNP-mapping in Drosophila melanogaster

Abstract

Positional cloning of chemically induced mutations is the rate-limiting step in forward genetic screens in Drosophila. Single-nucleotide polymorphisms (SNPs) are useful markers to locate a mutated region in the genome. Here, we provide a protocol for high-throughput, high-resolution SNP mapping that enables rapid and cost-effective positional cloning in Drosophila. In stage 1 of the protocol, we use highly multiplexed tag-array mini-sequencing assays to map mutations to an interval of 1–2 Mb. In these assays, SNPs are genotyped by primer extension using fluorescently labeled dideoxy-nucleotides. Fluorescent primers are captured and detected on a microarray. In stage 2, we selectively isolate recombinants within the identified 1–2 Mb interval for fine mapping of mutations to about 50 kb. We have previously demonstrated the applicability of this protocol by mapping 14 muscle morphogenesis mutants within 4 months, which represents a significant acceleration compared with other commonly used mapping strategies that may take years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAMS assay.
Figure 2: Overview of mapping procedure.
Figure 3: Embryo sample preparation and phenotyping.
Figure 4: Eighteen-tube block handling.
Figure 5: Stage 1 mapping of C233.

Similar content being viewed by others

References

  1. Jorgensen, E.M. & Mango, S.E. The art and design of genetic screens: Caenorhabditis elegans . Nat. Rev. Genet. 3, 356–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster . Nat. Rev. Genet. 3, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. van Eeden, F.J., Granato, M., Odenthal, J. & Haffter, P. Developmental mutant screens in the zebrafish. Methods Cell Biol. 60, 21–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, M.W. et al. Rapid single nucleotide polymorphism mapping in C. elegans . BMC Genomics 6, 118 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berger, J. et al. Genetic mapping with SNP markers in Drosophila . Nat. Genet. 29, 475–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Stickney, H.L. et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res. 12, 1929–1934 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoskins, R.A. et al. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster . Genome Res. 11, 1100–1113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, D. et al. High-resolution, high-throughput SNP mapping in Drosophila melanogaster . Nat Methods 5, 323–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Baner, J. et al. Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res. 31, e103 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shen, R. et al. High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Macdonald, S.J., Pastinen, T., Genissel, A., Cornforth, T.W. & Long, A.D. A low-cost open-source SNP genotyping platform for association mapping applications. Genome Biol. 6, R105 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thibault, S.T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Parks, A.L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ryder, E. et al. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177, 615–629 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lindroos, K., Sigurdsson, S., Johansson, K., Ronnblom, L. & Syvanen, A.C. Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system. Nucleic Acids Res. 30, e70 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lovmar, L., Fredriksson, M., Liljedahl, U., Sigurdsson, S. & Syvanen, A.C. Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res. 31, e129 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fuger, P., Behrends, L.B., Mertel, S., Sigrist, S.J. & Rasse, T.M. Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses. Nat. Protoc. 2, 3285–3298 (2007).

    Article  PubMed  Google Scholar 

  18. Wieschaus, E. & Nüsslein-Volhard, C. In Drosophila, a Practical Approach (ed. Roberts, D.B.) (Oxford Science Publications, Oxford University Press, 1998).

    Google Scholar 

  19. Casso, D., Ramirez-Weber, F.A. & Kornberg, T.B. GFP-tagged balancer chromosomes for Drosophila melanogaster . Mech. Dev. 88, 229–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Schnorrer, F., Kalchhauser, I. & Dickson, B.J. The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila . Dev. Cell 12, 751–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  22. Spradling, A.C. et al. The Berkeley Drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vallone, P.M. & Butler, J.M. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37, 226–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kaderali, L., Deshpande, A., Nolan, J.P. & White, P.S. Primer-design for multiplexed genotyping. Nucleic Acids Res. 31, 1796–1802 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Schnorrer or Ann-Christine Syvänen.

Supplementary information

Supplementary Data

Supplementary Data | An Excel file with example SNPmapper input files. Explanatory comments of the format are provided. (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnorrer, F., Ahlford, A., Chen, D. et al. Positional cloning by fast-track SNP-mapping in Drosophila melanogaster. Nat Protoc 3, 1751–1765 (2008). https://doi.org/10.1038/nprot.2008.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.175

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing