Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells

Abstract

We describe a protocol developed/modified by our group for the ex vivo and in vivo assessment of the response to a soluble factor of murine neural stem cells from the adult sub-ventricular zone (SVZ). The procedure includes several experimental options that can be used either independently or in combination. Potential factor effects on self-renewal, survival and proliferation are assayed by means of neurosphere cultures, with the factor administered directly in vitro to the culture plates (Step 1) or infused in vivo immediately before tissue dissociation (Step 3). We also use bromodeoxiuridine (BrdU) retention to label slowly dividing cells in vivo and subsequently perform two different types of experiments. In one set of experiments, the factor is added to primary cultures of stem cells obtained from the BrdU-pulsed animals and effects are tested on label-retaining cells after immunocytochemistry (Step 2). In another set, prolonged intraventricular infusion of the factor in BrdU-pulsed animals is followed by immunohistochemical analysis of BrdU labeling in the intact SVZ (Step 4). The minimum estimated time for the full combined procedure is 45 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental options and timings.
Figure 2: Scheme depicting dissection of the sub-ventricular zone (SVZ; top panel), as explained in Step 1A(ix–xi).
Figure 3: Strategies to label NSCs.

Similar content being viewed by others

References

  1. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Morshead, C.M., Craig, C.G. & van der Kooy, D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261 (1998).

    CAS  PubMed  Google Scholar 

  3. Craig, C.G., D'Sa, R., Morshead, C.M., Roach, A. & van der Kooy, D. Migrational analysis of the constitutively proliferating subependyma population in adult mouse forebrain. Neuroscience 93, 1197–1206 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, W., Nowakowski, R.S. & Vaccarino, F.M. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Doetsch, F., García-Verdugo, J.M. & Álvarez-Buylla, A. Regeneration of a germinal layer in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 96, 11619–11624 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Doetsch, F., Caille, I., Lim, D.A., García-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  9. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).

    Article  CAS  Google Scholar 

  11. Morshead, C.M., García, A.D., Sofroniew, M.V. & van der Kooy, D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci. 18, 76–84 (2003).

    Article  PubMed  Google Scholar 

  12. García, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    Article  PubMed  Google Scholar 

  13. Rietze, R.L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  PubMed  Google Scholar 

  15. Ferri, A.L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Potten, C.S. & Morris, R.J. Epithelial stem cells in vivo . J. Cell Sci. Suppl. 10, 45–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  Google Scholar 

  18. Bickenbach, J.R. & Chism, E. Selection and extended growth of murine epidermal stem cells in culture. Exp. Cell Res. 244, 184–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Duvillie, B., Attali, M., Aiello, V., Quemeneur, E. & Scharfmann, R. Label-retaining cells in the rat pancreas: location and differentiation potential in vitro . Diabetes 52, 2035–2042 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, R.W. & Gargett, C.E. Identification of label-retaining cells in mouse endometrium. Stem Cells 24, 1529–1538 (2006).

    Article  CAS  Google Scholar 

  21. Morshead, C.M. & van der Kooy, D. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J. Neurosci. 12, 249–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Kippin, T.E., Martens, D.J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bauer, S. & Patterson, P.H. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J. Neurosci. 26, 12089–12099 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tropepe, V., Craig, C.G., Morshead, C.M. & van der Kooy, D. Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J. Neurosci. 17, 7850–7849 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Gritti, A. et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J. Neurosci. 22, 437–445 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Morshead, C.M., García, A.D., Sofroniew, M.V. & van der Kooy, D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci. 18, 76–84 (2003).

    Article  PubMed  Google Scholar 

  28. Seaberg, R.M., Smukler, S.R. & van der Kooy, D. Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain. Dev. Biol. 278, 71–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Singec, I. et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods. 3, 801–806 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ramírez-Castillejo, C. et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9, 331–339 (2006).

    Article  PubMed  Google Scholar 

  31. Morshead, C.M., Craig, C.G. & van der Kooy, D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261 (1998).

    CAS  PubMed  Google Scholar 

  32. Morshead, C.M. & van der Kooy, D. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J. Neurosci. 12, 249–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Pencea, V., Bingaman, K.D., Wiegand, S.J. & Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706–6717 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. van Praag, H., Kempermann, G. & Gage, F.H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Seri, B. et al. Composition and organization of the SCZ: a large germinal layer containing neural stem cells in the adult mammalian brain. Cereb. Cortex 16, i103–i111 (2006).

    Article  PubMed  Google Scholar 

  36. Cameron, H.A. & McKay, R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida, Y., Yamada, M., Wakabayashi, K. & Ikuta, F. Immunohistochemical detection of DNA replicating cells in the developing nervous system: use of bromodeoxyuridine and its monoclonal antibody to rat fetuses. Biomed. Res. 8, 431–444 (1987).

    Article  CAS  Google Scholar 

  38. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo . Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Craig, C.G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J. & Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the contribution of other lab members to parts of the procedures contained in this protocol. The authors' laboratory is supported by grants from the Spanish Ministerio de Educación y Ciencia and Ministerio de Sanidad y Consumo and from Fundación la Caixa. M.A.M.-T. was a fellow of the Programa de Medicina Regenerativa de la Comunidad Valenciana (MSC y GVA, Spain) and C.A.-A. was a fellow of the MEC-FPU Program. H.M. and P.S. are investigators in the Ramón y Cajal Program (MEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Fariñas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrón, S., Andreu-Agulló, C., Mira, H. et al. A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nat Protoc 2, 849–859 (2007). https://doi.org/10.1038/nprot.2007.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.104

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing