Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for conducting 7-day daily renewal tests with Lemna gibba

Abstract

Lemna gibba (a duckweed) is a freshwater macrophyte commonly used in toxicity testing, and Lemna spp are currently the only aquatic higher plants required for evaluation of pesticides under the pesticide registration guidelines of the EPA. The methods currently available for toxicity testing by various organizations and agencies, including ASTM, OECD, EPA and Environment Canada, are largely static or semistatic tests with unspecified renewal intervals (OECD) and may not provide a consistent means of exposure owing to short toxicant half-life in aquatic media, uptake of chemical by plants and evaporation of nutrient media. The procedure outlined here details a simple and efficient 7-day daily static renewal procedure for conducting toxicity tests with L. gibba, the appropriate end points to assess, the statistical criteria necessary for analyzing the toxicity data, as well as the steps required to culture and maintain L. gibba. This protocol is based on a modified version of a widely accepted static method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual reference for L. gibba test cultures.
Figure 2: Visual reference for the experimental setup and renewal procedure for a 7-day daily static renewal test with L. gibba using a randomized complete block design (seven treatments, including solvent controls, nonsolvent controls and five treatment levels, and three replicates) on a tray in a laminar flow hood.
Figure 3: Visual reference for conducting multiple 7-day daily static renewal tests with L. gibba, examples of potential phytotoxic symptoms for different stressor types, and an example of a concentration–response effects sequence.

Similar content being viewed by others

References

  1. Hillman, W.S. The lemnaceae or duckweeds: a review of the description and experimental literature. Bot. Rev. 27, 221–287 (1961).

    Article  CAS  Google Scholar 

  2. Landolt, E. “The Family of Lemnaceae: A Monographic Study”. Volume 1. Ver. Geobotan. 1–566 (Institute ETH, Stiftung Rubel, Zurich, 1986).

    Google Scholar 

  3. Davy, M., Petrie, R., Smrchek, J., Kuchnicki, T. & Francois, D. 158 (USEPA, Washington DC, 2001).

  4. Ben-Tal, Y. & Cleland, C.F. Uptake and metabolism of [14C]salicylic acid in Lemna gibba G3. Plant Physiol. 70, 291–296 (1982).

    Article  CAS  Google Scholar 

  5. Gorham, P.R. Measurements of the response of Lemna to growth promoting substances. Am. J. Bot. 28, 98–101 (1941).

    Article  CAS  Google Scholar 

  6. Greenberg, B.M., Huang, X.-D. & Dixon, D.G. Applications of the aquatic higher plant Lemna gibba for ecotoxicological risk assessment. J. Aquatic Ecosyst. Health 1, 147–155 (1992).

    Article  Google Scholar 

  7. Greenberg, B.M., Gaba, V., Mattoo, A.K. & Edelman, M. Identification of a primary in vivo degradation product of 32 Kd protein of photosystem II. Eur. Mol. Biol. Org. 6, 2865–2869 (1987).

    Article  CAS  Google Scholar 

  8. Dakta, A.H. & Mudd, S.H. Uptake of amino acids and other organic compounds by Lemna paucicostata Heglm 6746. Plant Physiol. 77, 770–778 (1985).

    Article  Google Scholar 

  9. Ben-Izhak, M.E., Lost, D., Porath, D. & Tal, M. 15N nuclear magnetic resonance study of ammonium ion assimilation by Lernna gibba L. New Phytol 107, 341–345 (1987).

    Article  Google Scholar 

  10. Ullrich-Eberius, C.I., Novacky, A. & van Bel, A.J.E. Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta (Heidelberg) 161, 46–52 (1984).

    Article  CAS  Google Scholar 

  11. Fairchild, J.F., Ruessler, D.S., Haverland, P.S. & Carlson, A.R. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch. Environ. Contam. Toxicol. 32, 353–357 (1997).

    Article  CAS  Google Scholar 

  12. Fairchild, J.F., Ruessler, D.S. & Carlson, A.R. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ. Toxicol. Chem. 17, 1830–1834 (1998).

    Article  CAS  Google Scholar 

  13. ASTM E. 1415-91 Standard Guide for Conducting Static Toxicity Tests with Lemna gibba G3 (American Society for Testing and Materials, West Conshohocken, PA, 1999).

  14. OECD guidelines for the testing of chemicals: revised proposal for a new guideline 221: Lemna spp. Growth Inhibition Test. OECD (Organization of Economic Cooperation and Development, Paris, France, 2002).

  15. Environment-Canada. Biological Test Method: test for measuring the inhibition of growth using the freshwater macrophyte Lemna minor. (Method development and application section, Ottawa, ON: Environmental Technology Centre, Environment Canada, Report EPS, 1999).

  16. Ecological effects test guidelines: OPPTS 850.4400 Aquatic plant toxicity test using Lemna spp., Tiers I and II. Washington D.C. USEPA (United States Environmental Protection Agency, Prevention, Pesticides and Toxic Substances (7101) EPA712–C–96–156, 1996).

  17. Brain, R.A. et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static renewal test. Environ. Toxicol. Chem. 23, 371–382 (2004).

    Article  CAS  Google Scholar 

  18. Wang, W. (ed.) Higher Plants (Common Duckweed, Lettuce, and Rice) for Effluent Toxicity Assessment (American Society for Testing and Materials, Philadelphia, 1991).

    Book  Google Scholar 

  19. Porra, R.J., Thompson, W.A. & Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

    Article  CAS  Google Scholar 

  20. Rowan, K.S. Photosynthetic Pigments of Algae (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  21. Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).

    Article  CAS  Google Scholar 

  22. Brain, R.A., Hanson, M.L., Solomon, K.R. & Brooks, B.W. Aquatic plants exposed to pharmaceuticals: effects and risks. Rev. Environ. Contam. Toxicol. (in the press).

  23. Pflugmacher, S., Schwarz, S., Pachur, H.J. & Steinberg, C.E.W. Effects of tributyltin chloride (TBTCl) on detoxication enzymes in aquatic plants. Environ. Toxicol. 15, 225–233 (2000).

    Article  CAS  Google Scholar 

  24. Roy, S., Lindström-Seppä, P., Huuskonen, S. & Hänninen, O. Responses of biotransformation and antioxidant enzymes in Lemna minor and Oncorhynchus mykiss exposed simultaneously to hexachlorobenzene. Chemosphere 30, 1489–1498 (1995).

    Article  CAS  Google Scholar 

  25. Akhtar, T.A., Lampi, M.A. & Greenberg, B.M. Identification of six differentially expressed genes in response to copper exposure in the aquatic plant Lemna gibba (duckweed). Environ. Toxicol. Chem. 24, 1705–1715 (2005).

    Article  CAS  Google Scholar 

  26. Babu, S.T. et al. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol. 44, 1320–1329 (2003).

    Article  CAS  Google Scholar 

  27. Xie, F. et al. Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna: evidence for a reactive oxygen mechanism. Environ. Toxicol. Chem. 25, 613–622 (2006).

    Article  CAS  Google Scholar 

  28. Byl, T.D. & Klaine, S.J. in Plants for Toxicity Assessment: Second Volume, ASTM STP 1115 (eds. Gorsuch, J.W., Lower, W.R., Wang, W. & Lewis, M.A.) 101–106 (Amercian Society for Testing and Materials, Philadelphia, 1991).

    Book  Google Scholar 

  29. Lytle, J.S. & Lytle, T.F. Use of plants for toxicity assessment of estuarine ecosystems. Environ. Toxicol. Chem. 20, 68–83 (2001).

    Article  CAS  Google Scholar 

  30. Marwood, C.A., Solomon, K.R. & Greenberg, B.M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 20, 890–898 (2001).

    Article  CAS  Google Scholar 

  31. Wilson, K.E., Thompson, J.E., Huner, N.P.A. & Greenberg, B.M. Effects of ultraviolet-A exposure on ultraviolet-B-induced accumulation of specific flavonoids in Brassica napus . Photochem. Photobiol. 73, 678–684 (2001).

    Article  CAS  Google Scholar 

  32. Ferrat, L., Pergent-Martini, C. & Roméo, M. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquatic Toxicol. 65, 187–204 (2003).

    Article  CAS  Google Scholar 

  33. Lewis, S., May, S., Donkin, M.E. & Depledge, M.H. The influence of copper and heatshock on the physiology and cellular stress response of Enteromorpha intestinalis . Environ. Res. 46, 421–424 (1998).

    CAS  Google Scholar 

  34. Lewis, S., Donkin, M.E. & Depledge, M.H. Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquatic Toxicol. 51, 277–291 (2001).

    Article  CAS  Google Scholar 

  35. Brain, R.A. et al. Herbicidal effects of statin pharmaceuticals in Lemna gibba . Environ. Sci. Technol. 40, 5116–5123 (2006).

    Article  CAS  Google Scholar 

  36. Kushwaha, S. & Bhowmik, P.C. Inhibition of pigment biosynthesis in cucumber cotyledons by isoxaflutole. Photosynthetica (Prague) 37, 553–558 (1999).

    Article  CAS  Google Scholar 

  37. Stephenson, G.L., Koper, N., Atkinson, G.F., Solomon, K.R. & Scroggins, R.P. Use of nonlinear regression techniques for describing concentration–response relationships of plant species exposed to contaminated site soils. Environ. Toxicol. Chem. 19, 2968–2981 (2000).

    Article  CAS  Google Scholar 

  38. Hanson, M.L., Sanderson, H. & Solomon, K.R. Variation, replication and power analysis of Myriophyllum spp. microcosm toxicity data. Environ. Toxicol. Chem. 22, 1318–1329 (2003).

    Article  CAS  Google Scholar 

  39. Hanson, M.L. & Solomon, K.R. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity. Environ. Pollut. 130, 371–383 (2004).

    Article  CAS  Google Scholar 

  40. Kraufvelin, P. Model ecosystem replicability challenged by the “soft”: reality of a hard bottom mesocosm. J. Exp. Marine Biol. Ecol. 222, 247–267 (1998).

    Article  Google Scholar 

  41. Sokal, R.R. & Rohlf, F.J. Biometry. 3rd edn. (W.H. Freeman and Company, New York, 1995).

  42. Warren-Hicks, W.J. & Parkhurst, B.R. Performance characteristics of effluent toxicity tests: variability and its implications for regulatory policy. Environ. Toxicol. Chem. 11, 793–804 (1992).

    Article  CAS  Google Scholar 

  43. Brain, R.A. et al. Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum . Environ. Pollut. 133, 389–401 (2005).

    Article  CAS  Google Scholar 

  44. Sanderson, H. & Petersen, S. Power analysis as a reflexive scientific tool for interpretation and implementation of the precautionary principal in the European Union. Environ. Sci. Pollut. Res. 8 Commentary (2001).

  45. Christman, E.W. et al. in Aquatic Mesocosm Studies in Ecological Risk Assessment (eds. Graney, R.L., Kennedy, J.H. & Rodgers, J.H. Jr) 105–129 (CRC Press Inc., Lewis Publishers, Boca Raton, FL, 1994).

    Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Bruce Greenberg and Dr Mark Hanson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A Brain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brain, R., Solomon, K. A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat Protoc 2, 979–987 (2007). https://doi.org/10.1038/nprot.2007.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.146

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing