Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The 32P-postlabeling assay for DNA adducts

This article has been updated

Abstract

32P-postlabeling analysis is an ultrasensitive method for the detection and quantitation of carcinogen–DNA adducts. It consists of four principal steps: (i) enzymatic digestion of DNA to nucleoside 3′-monophosphates; (ii) enrichment of the adduct fraction of the DNA digest; (iii) 5′-labeling of the adducts by transfer of 32P-orthophosphate from [γ-32P]ATP mediated by polynucleotide kinase (PNK); (iv) chromatographic or electrophoretic separation of the labeled adducts or modified nucleotides and quantitation by measurement of their radioactive decay. The assay requires only microgram quantities of DNA and is capable of detecting adducts at frequencies as low as 1 in 1010 nt, making it applicable to the detection of events resulting from environmental exposures, or experiments using physiological concentrations of agents. It has a wide range of applications in human, animal and in vitro studies, and can be used for a wide variety of classes of compound and for the detection of adducts formed by complex mixtures. This protocol can be completed in 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods of 32P-postlabeling.
Figure 2: Diagram showing multidirectional thin-layer chromatography procedures for the resolution of 32P-labeled adducts on polyethyleneimine-cellulose.
Figure 3: Examples of thin-layer chromatograms of 32P-postlabeled DNA.
Figure 4: Safety precautions.
Figure 5

Similar content being viewed by others

Change history

  • 17 January 2008

    In Figure 1 of the version of this article originally published, the arrow between “*pXp” and “*pX” should not have been bold, as it does not indicate a procedure for which a protocol is given in the article. In addition, the legend should have contained, as the third sentence, the following information: “For procedures leading to *pX as the final products, see Table 2, column 3.” The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Phillips, D.H. et al. Methods of DNA adduct determination and their application to testing compounds for genotoxicity. Environ. Mol. Mutagen. 35, 222–233 (2000).

    Article  CAS  Google Scholar 

  2. Phillips, D.H. DNA adducts as markers of exposure and risk. Mutat. Res. 577, 284–292 (2005).

    Article  CAS  Google Scholar 

  3. Poirier, M.C., Santella, R.M. & Weston, A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21, 353–359 (2000).

    Article  CAS  Google Scholar 

  4. Phillips, D.H. The formation of DNA adducts. in The Cancer Handbook Vol. 1 (ed. Allison, M.R.) 338–350 (Wiley, Chichester, 2007).

    Google Scholar 

  5. Arlt, V.M., Frei, E. & Schmeiser, H.H. ECNIS-sponsored workshop on biomarkers of exposure and cancer risk: DNA damage and DNA adduct detection and 6th GUM-32P-postlabelling workshop, German Cancer Research Center, Heidelberg, Germany, 29-30 September 2006. Mutagenesis 22, 83–88 (2007).

    Article  CAS  Google Scholar 

  6. Gupta, R.C., Reddy, M.V. & Randerath, K. 32P-postlabeling analysis of non-radioactive aromatic carcinogen-DNA adducts. Carcinogenesis 3, 1081–1092 (1982).

    Article  CAS  Google Scholar 

  7. Randerath, K. & Randerath, E. Postlabelling methods—an historical review. in Postlabelling Methods for Detection of DNA Adducts (eds. Phillips, D.H., Castegnaro, M. & Bartsch, H.) 3–9 (International Agency for Research on Cancer, Lyon, 1993).

    Google Scholar 

  8. Poirier, M.C. Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer 4, 630–637 (2004).

    Article  CAS  Google Scholar 

  9. Phillips, D.H. Smoking-related DNA and protein adducts in human tissues. Carcinogenesis 23, 1979–2004 (2002).

    Article  CAS  Google Scholar 

  10. Pfau, W. & Phillips, D.H. Improved reversed-phase high-performance liquid chromatographic separation of 32P-labelled nucleoside 3′,5′-bisphosphate adducts of polycyclic hydrocarbons. J. Chromatogr. 570, 65–76 (1991).

    Article  CAS  Google Scholar 

  11. Phillips, D.H. et al. N-Demethylation accompanies α-hydroxylation in the metabolic activation of tamoxifen in rat liver cells. Carcinogenesis 20, 2003–2009 (1999).

    Article  CAS  Google Scholar 

  12. Osborne, M.R. et al. Synthesis, characterization, and 32p-postlabeling analysis of DNA adducts derived from the environmental contaminant 3-nitrobenzanthrone. Chem. Res. Toxicol. 18, 1056–1070 (2005).

    Article  CAS  Google Scholar 

  13. Arlt, V.M. et al. Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and N2 position of guanine and at the N6 position of adenine. Int. J. Cancer 118, 2139–2146 (2006).

    Article  CAS  Google Scholar 

  14. Phillips, D.H. & Castegnaro, M. Results of an interlaboratory trial of 32P-postlabelling. in Postlabelling Methods for Detection of DNA Damage (eds. Phillips, D.H., Castegnaro, M. & Bartsch, H.) 35–49 (IARC, Lyon, 1993).

    Google Scholar 

  15. Phillips, D.H. & Castegnaro, M. Standardization and validation of DNA adduct postlabelling methods: report of interlaboratory trials and production of recommended protocols. Mutagenesis 14, 301–315 (1999).

    Article  CAS  Google Scholar 

  16. Osborne, M.R. & Phillips, D.H. Preparation of a methylated DNA standard, and its stability on storage. Chem. Res. Toxicol. 13, 257–261 (2000).

    Article  CAS  Google Scholar 

  17. Vodicka, P. & Hemminki, K. 32P-Postlabeling of N-7, N2 and O6 2′-deoxyguanosine 3′-monophosphate adducts of styrene oxide. Chem. Biol. Interact. 77, 39–50 (1991).

    Article  CAS  Google Scholar 

  18. Beland, F.A. et al. Synthesis, characterization, and quantitation of a 4-aminobiphenyl-DNA adduct standard. Chem. Res. Toxicol. 12, 68–77 (1999).

    Article  CAS  Google Scholar 

  19. Haack, T. et al. Synthesis, characterization, and 32P-postlabeling of N-(deoxyguanosin)-4-aminobiphenyl 3′-phosphate adducts. Chem. Res. Toxicol. 17, 776–784 (2004).

    Article  CAS  Google Scholar 

  20. Harvey, J.S., Lyons, B.P., Waldock, M. & Parry, J.M. The application of the 32P-postlabelling assay to aquatic biomonitoring. Mutat. Res. 378, 77–88 (1997).

    Article  CAS  Google Scholar 

  21. Brown, K., Heydon, R.T., Jukes, R., White, I.N. & Martin, E.A. Further characterisation of the DNA adducts formed in rat liver after the administration of tamoxifen, N-desmethyltamoxifen or N,N-didesmethyltamoxifen. Carcinogenesis 20, 2011–2016 (1999).

    Article  CAS  Google Scholar 

  22. Arlt, V.M. et al. Aristolochic acid mutagenesis: molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis, doi:10.1093/carcin/bgm079 (2007).

  23. Arlt, V.M. 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: a review of the evidence. Mutagenesis 20, 399–410 (2005).

    Article  CAS  Google Scholar 

  24. Arlt, V.M. et al. Environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols. Cancer Res. 65, 2644–2652 (2005).

    Article  CAS  Google Scholar 

  25. Podmore, K., Farmer, P.B., Herbert, K.E., Jones, G.D. & Martin, E.A. 32P-postlabelling approaches for the detection of 8-oxo-2′-deoxyguanosine-3′-monophosphate in DNA. Mutat. Res. 378, 139–149 (1997).

    Article  CAS  Google Scholar 

  26. Wilson, V.L., Taffe, B.G., Shields, P.G., Povey, A.C. & Harris, C.C. Detection and quantification of 8-hydroxydeoxyguanosine adducts in peripheral blood of people exposed to ionising radiation. Environ. Health Perspect. 99, 261–263 (1993).

    Article  CAS  Google Scholar 

  27. Devanaboyina, U. & Gupta, R.C. Sensitive detection of 8-hydroxy-2'-deoxyguanosine in DNA by 32P-postlabeling assay and the basal levels in rat tissues. Carcinogenesis 17, 917–924 (1996).

    Article  CAS  Google Scholar 

  28. Weinfeld, M. et al. Use of a postlabelling assay to examine the removal of radiation-induced DNA lesions by purified enzymes and human cell extracts. Mutat. Res. 378, 127–137 (1997).

    Article  CAS  Google Scholar 

  29. Weinfeld, M., Liuzzi, M. & Paterson, M.C. Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: design of a 32P-postlabeling assay for apurinic sites in DNA. Biochemistry 29, 1737–1743 (1990).

    Article  CAS  Google Scholar 

  30. Weinfeld, M., Liuzzi, M. & Paterson, M.C. Enzymatic analysis of isomeric trithymidylates containing ultraviolet light-induced cyclobutane pyrimidine dimers. II. Phosphorylation by T4 polynucleotide kinase. J. Biol. Chem. 264, 6364–6370 (1989).

    CAS  PubMed  Google Scholar 

  31. Kotova, N., Hemminki, K. & Segerback, D. Urinary thymidine dimer as a marker of total body burden of UV-inflicted DNA damage in humans. Cancer Epidemiol. Biomarkers Prev. 14, 2868–2872 (2005).

    Article  CAS  Google Scholar 

  32. Hegi, M.E., Sagelsdorff, P. & Lutz, W.K. Detection by 32P-postlabeling of thymine glycol in γ-irradiated DNA. Carcinogenesis 10, 43–47 (1989).

    Article  CAS  Google Scholar 

  33. Reddy, M.V., Bleicher, W.T. & Blackburn, G.R. 32P-Postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase. Cancer Commun. 3, 109–117 (1991).

    Article  CAS  Google Scholar 

  34. Weinfeld, M. & Soderlind, K.J. 32P-postlabeling detection of radiation-induced DNA damage: identification and estimation of thymine glycols and phosphoglycolate termini. Biochemistry, 30, 1091–1097 (1991).

    Article  CAS  Google Scholar 

  35. Lloyd, D.R. & Hanawalt, P.C. p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells. Cancer Res. 60, 517–521 (2000).

    CAS  PubMed  Google Scholar 

  36. Blommaert, F.A. & Saris, C.P. Detection of platinum-DNA adducts by 32P-postlabelling. Nucleic Acids Res. 23, 1300–1306 (1995).

    Article  CAS  Google Scholar 

  37. Welters, M.J. et al. Improved 32P-postlabelling assay for the quantitation of the major platinum-DNA adducts. Carcinogenesis 18, 1767–1774 (1997).

    Article  CAS  Google Scholar 

  38. Baird, W.M. et al. Analysis of polycyclic aromatic hydrocarbon-DNA adducts by postlabelling with the weak ß-emitters 35S-phosphorothioate and 33P-phosphate, immobilized boronate chromatography and high-performance liquid chromatography. in Postlabelling Methods for Detection of DNA Adducts (eds. Phillips, D.H., Castegnaro, M. & Bartsch, H.) 217–227 (IARC, Lyon, 1993).

    Google Scholar 

  39. Gupta, R.C. Enhanced sensitivity of 32P-postlabeling analysis of aromatic carcinogen:DNA adducts. Cancer Res. 45, 5656–5662 (1985).

    CAS  PubMed  Google Scholar 

  40. Reddy, M.V. & Randerath, K. Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7, 1543–1551 (1986).

    Article  CAS  Google Scholar 

  41. Phillips, D.H. Macromolecular adducts as biomarkers of human exposure to polycyclic aromatic hydrocarbons. in The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons (ed. Luch, A.) 137–169 (Imperial College Press, London, 2005).

    Chapter  Google Scholar 

  42. Arif, J.M. et al. Lung DNA adducts detected in human smokers are unrelated to typical polyaromatic carcinogens. Chem. Res. Toxicol. 19, 295–299 (2006).

    Article  CAS  Google Scholar 

  43. Munnia, A. et al. 32P-post-labelling method improvements for aromatic compound-related molecular epidemiology studies. Mutagenesis, doi:10.1093/mutage/gem030 (2007).

  44. Gupta, R.C. & Earley, K. 32P-adduct assay: comparative recoveries of structurally diverse DNA adducts in the various enhancement procedures. Carcinogenesis 9, 1687–1693 (1988).

    Article  CAS  Google Scholar 

  45. Gallagher, J.E., Jackson, M.A., George, M.H., Lewtas, J. & Robertson, I.G. Differences in detection of DNA adducts in the 32P-postlabelling assay after either 1-butanol extraction or nuclease P1 treatment. Cancer Lett. 45, 7–12 (1989).

    Article  CAS  Google Scholar 

  46. Möller, L., Zeisig, M. & Vodicka, P. Optimization of an HPLC method for analyses of 32P-postlabeled DNA adducts. Carcinogenesis 14, 1343–1348 (1993).

    Article  Google Scholar 

  47. Nortier, J.L. et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med. 342, 1686–1692 (2000).

    Article  CAS  Google Scholar 

  48. Arlt, V.M., Bieler, C.A., Mier, W., Wiessler, M. & Schmeiser, H.H. DNA adduct formation by the ubiquitous environmental contaminant 3-nitrobenzanthrone in rats determined by 32P-postlabeling. Int. J. Cancer 93, 450–454 (2001).

    Article  CAS  Google Scholar 

  49. Topinka, J. et al. DNA adduct formation in mammalian cell cultures by polycyclic aromatic hydrocarbons (PAH) and nitro-PAH in coke oven emission extract. Mutat. Res. 419, 91–105 (1998).

    Article  CAS  Google Scholar 

  50. Phillips, D.H., Hewer, A. & Grover, P.L. Aromatic DNA adducts in human bone marrow and peripheral blood leukocytes. Carcinogenesis 7, 2071–2075 (1986).

    Article  CAS  Google Scholar 

  51. Gallagher, J. et al. Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions, carbon black and titanium dioxide particles. Carcinogenesis 15, 1291–1299 (1994).

    Article  CAS  Google Scholar 

  52. Landvik, N.E. et al. Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: possible implications for their mutagenic and carcinogenic effects. Toxicology 231, 159–174 (2007).

    Article  CAS  Google Scholar 

  53. Stiborova, M. et al. Characterization of DNA adducts formed by aristolochic acids in the target organ (forestomach) of rats by 32P-postlabelling analysis using different chromatographic procedures. Carcinogenesis 15, 1187–1192 (1994).

    Article  CAS  Google Scholar 

  54. Stiborova, M., Stiborova-Rupertova, M., Borek-Dohalska, L., Wiessler, M. & Frei, E. Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem. Res. Toxicol. 16, 38–47 (2003).

    Article  CAS  Google Scholar 

  55. Stone, E.M., Williams, J.A., Grover, P.L., Gusterson, B.A. & Phillips, D.H. Interindividual variation in the metabolic activation of heterocyclic amines and their N-hydroxy derivatives in primary cultures of human mammary epithelial cells. Carcinogenesis 19, 873–879 (1998).

    Article  CAS  Google Scholar 

  56. Williams, J.A. et al. Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue. Carcinogenesis 21, 1683–1689 (2000).

    Article  CAS  Google Scholar 

  57. Phillips, D.H. et al. Organ specificity of DNA adduct formation by tamoxifen and α-hydroxytamoxifen in the rat: implications for understanding the mechanism(s) of tamoxifen carcinogenicity and for human risk assessment. Mutagenesis 20, 297–303 (2005).

    Article  CAS  Google Scholar 

  58. Stiborova, M., Frei, E., Schmeiser, H.H. & Wiessler, M. 32P-postlabeling analysis of adducts formed from 1-phenylazo-2-hydroxynaphthalene (Sudan I, Solvent Yellow 14) with DNA and homopolydeoxyribonucleotides. Carcinogenesis 13, 1221–1225 (1992).

    Article  CAS  Google Scholar 

  59. Stiborova, M. et al. Identification of a genotoxic mechanism for 2-nitroanisole carcinogenicity and of its carcinogenic potential for humans. Carcinogenesis 25, 833–840 (2004).

    Article  CAS  Google Scholar 

  60. Reddy, M.V., Bleicher, W.T., Blackburn, G.R. & Mackerer, C.R. DNA adduction by phenol, hydroquinone, or benzoquinone in vitro but not in vivo: nuclease P1-enhanced 32P-postlabeling of adducts as labeled nucleoside bisphosphates, dinucleotides and nucleoside monophosphates. Carcinogenesis 11, 1349–1357 (1990).

    Article  CAS  Google Scholar 

  61. Randerath, K., Randerath, E., Danna, T.F., van Golen, K.L. & Putman, K.L. A new sensitive 32P-postlabeling assay based on the specific enzymatic conversion of bulky DNA lesions to radiolabeled dinucleotides and nucleoside 5'-monophosphates. Carcinogenesis 10, 1231–1239 (1989).

    Article  CAS  Google Scholar 

  62. Dunn, B.P. & San, R.H. HPLC enrichment of hydrophobic DNA adducts for enhanced sensitivity of 32P-postlabeling analysis. Carcinogenesis 9, 1055–1060 (1988).

    Article  CAS  Google Scholar 

  63. Turesky, R.J. & Markovic, J. DNA adduct formation of the food carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline at the C-8 and N2 atoms of guanine. Chem. Res. Toxicol. 7, 752–761 (1994).

    Article  CAS  Google Scholar 

  64. Phillips, D.H. et al. Activation of tamoxifen and its metabolite α-hydroxytamoxifen to DNA-binding products: comparisons between human, rat and mouse hepatocytes. Carcinogenesis 17, 88–94 (1996).

    Google Scholar 

  65. Cooper, D.P., Griffin, K.A. & Povey, A.C. Immunoaffinity purification combined with 32P-postlabelling for the detection of O6-methylguanine in DNA from human tissues. Carcinogenesis 13, 469–475 (1992).

    Article  CAS  Google Scholar 

  66. Nair, J., Barbin, A., Guichard, Y. & Bartsch, H. 1,N6-Ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabelling. Carcinogenesis 16, 613–617 (1995).

    Article  CAS  Google Scholar 

  67. Gorelick, N.J. & Wogan, G.N. Fluoranthene-DNA adducts: identification and quantification by an HPLC-32P-postlabeling method. Carcinogenesis 10, 1567–1577 (1989).

    Article  CAS  Google Scholar 

  68. Pfau, W., Brockstedt, U., Söhren, K. & Marquardt, H. 32P-Post-labelling analysis of DNA adducts formed by food-derived heterocyclic amines: evidence for incomplete hydrolysis and a procedure for adduct pattern simplification. Carcinogenesis 15, 877–882 (1994).

    Article  CAS  Google Scholar 

  69. Terashima, I., Suzuki, N. & Shibutani, S. 32P-Postlabeling/polyacrylamide gel electrophoresis analysis: application to the detection of DNA adducts. Chem. Res. Toxicol. 15, 305–311 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, D., Arlt, V. The 32P-postlabeling assay for DNA adducts. Nat Protoc 2, 2772–2781 (2007). https://doi.org/10.1038/nprot.2007.394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.394

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing