Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing

Abstract

Recent years have seen the development of a number of reagentless, electrochemical sensors based on the target-induced folding or unfolding of electrode-bound oligonucleotides, with examples reported to date, including sensors for the detection of specific nucleic acids, proteins, small molecules and inorganic ions. These devices, which are often termed electrochemical DNA (E-DNA) and E-AB (electrochemical, aptamer-based) sensors, are comprised of an oligonucleotide probe modified with a redox reporter (in this protocol methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of an analyte to the oligonucleotide probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. This class of sensors perform well even when challenged directly with blood serum, soil and other complex, multicomponent sample matrices. This protocol describes the fabrication of E-DNA and E-AB sensors. The protocol can be completed in 12 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The original E-DNA sensor is comprised of a stem-loop DNA modified on one terminus with a redox reporter and chemi-absorbed at the other to an interrogating electrode7.
Figure 2
Figure 3: The E-AB sensor is based on the target binding-induced folding of electrode-bound DNA aptamer.
Figure 4: The signal gain of E-AB sensors depends on the relative collision dynamics in the folded (bound) and unfolded (target-free) states and thus can be either signal-on or signal-off depending on the structure of the final folded form of the aptamer.
Figure 5
Figure 6: We employ oxidation and reduction scanning under basic conditions (0.5 M NaOH) to clean our electrodes before sensor fabrication.

Similar content being viewed by others

References

  1. Drummond, T.G., Hill, M.G. & Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Thorp, H.H. Cutting out the middleman: DNA biosensors based on electrochemical oxidation. Trends Biotechnol. 16, 117–121 (1998).

    Article  CAS  Google Scholar 

  3. Park, S.J., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Gibbs, J.M. et al. Polymer-DNA hybrids as electrochemical probes for the detection of DNA. J. Am. Chem. Soc. 127, 1170–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Liu, G.D. & Zhu, Q.Y. Indium microrod tags for electrochemical detection of DNA hybridization. Anal. Chem. 75, 6218–6222 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hwang, S., Kim, E. & Kwak, J. Electrochemical detection of DNA hybridization using biometallization. Anal. Chem. 77, 579–584 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fan, C.H., Plaxco, K.W. & Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 100, 9134–9137 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Immoos, C.E., Lee, S.J. & Grinstaff, M.W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. J. Am. Chem. Soc. 126, 10814–10815 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Immoos, C.E., Lee, S.J. & Grinstaff, M.W. Conformationally gated electrochemical gene detection. ChemBioChem 5, 1100–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lubin, A.A., Lai, R.Y., Baker, B.R., Heeger, A.J. & Plaxco, K.W. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal. Chem. 78, 5671–5677 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lai, R.Y., Seferos, D.S., Heeger, A.J., Bazan, G.C. & Plaxco, K.W. Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir 22, 10796–10800 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Anne, A., Bouchardon, A. & Moiroux, J. 3′-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J. Am. Chem. Soc. 125, 1112–1113 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mao, Y.D., Luo, C.X. & Ouyang, Q. Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 31, e108 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ricci, F., Lai, R.Y., Heeger, A.J., Plaxco, K.W. & Sumner, J.J. Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23, 6827–6834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao, Y., Lubin, A.A., Baker, B.R., Plaxco, K.W. & Heeger, A.J. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc. Natl. Acad. Sci. USA 103, 16677–17780 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, Y., Lubin, A.A., Heeger, A.J. & Plaxco, K.W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 44, 5456–5459 (2005).

    Article  CAS  Google Scholar 

  17. Radi, A.E., Sanchez, J.L.A., Baldrich, E. & O'Sullivan, C.K. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc. 128, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Lai, R.Y., Plaxco, K.W. & Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem. 79, 229–233 (2006).

    Article  Google Scholar 

  19. Baker, B.R. et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zuo, X. et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129, 1042–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, Y., Rowe, A.A. & Plaxco, K.W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J. Am. Chem. Soc. 129, 262–263 (2006).

    Article  Google Scholar 

  22. Ricci, F., Lai, R.Y. & Plaxco, K.W. Linear, redox modified DNA probes as electrochemical DNA sensors. Chem. Commun. 36, 3768–3770 (2007).

    Article  Google Scholar 

  23. Hamula, C.L.A., Guthrie, J.W., Zhang, H.Q., Li, X.F. & Le, X.C. Selection and analytical applications of aptamers. Trac-Trends Anal. Chem. 25, 681–691 (2006).

    Article  CAS  Google Scholar 

  24. Lai, R.Y., Lee, S.-H., Soh, H.T., Plaxco, K.W. & Heeger, A.J. Differential labeling of closely-spaced biosensor electrodes via oxidative desorption. Langmuir 22, 1932–1936 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Carvalhal, R.T., Freire, R.S. & Kubota, L.T. Polycrystalline gold electrodes: a comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation. Electroanalysis 17, 1251–1259 (2005).

    Article  CAS  Google Scholar 

  26. Willner, I. & Riklin, A. Electrical communication between electrodes and NAD(P)(+)-dependent enzymes using pyrroloquinolinequinone-enzyme electrodes in a self-assembled monolayer configuration—design of a new glass of amperometric biosensors. Anal. Chem. 66, 1535–1539 (1994).

    Article  CAS  Google Scholar 

  27. O'Connor, S.D., Olsen, G.T. & Creager, S.E. A Nernstian electron source model for the ac voltammetric response of a reversible surface redox reaction using large-amplitude ac voltages. J. Electroanal. Chem. 466, 197–202 (1999).

    Article  CAS  Google Scholar 

  28. Lai, R.Y. et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proc. Natl. Acad. Sci. USA 103, 4017–4021 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Lawrence Livermore National Laboratory (URP-06-019), by the Institute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from the US Army Research Office. We also thank Arica Lubin and Francesco Ricci for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W Plaxco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Lai, R. & Plaxco, K. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2, 2875–2880 (2007). https://doi.org/10.1038/nprot.2007.413

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.413

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing