Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bicelle samples for solid-state NMR of membrane proteins

Abstract

Magnetically aligned bicelles are an excellent medium for structure determination of isotopically labeled membrane proteins by solid-state NMR spectroscopy. Bicelles are a mixture of long- and short-chain phospholipids that form bilayers in an aqueous medium and align spontaneously in a high magnetic field, for example that of an NMR spectrometer with a 1H resonance frequency between 400 and 900 MHz. Importantly, membrane proteins have been shown to be fully functional in these fully hydrated, planar bilayers under physiological conditions of pH and temperature. We describe a protocol for preparing stable protein-containing bicelles samples that yield high-resolution solid-state NMR spectra. Depending on the details of the protein and its behavior in the lipids, the time for sample preparation can vary from a few hours to several days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of aligned bicelle membrane.
Figure 2: One-dimensional NMR spectra of bicelle samples of membrane proteins.

Similar content being viewed by others

References

  1. De Angelis, A.A. et al. NMR experiments on aligned samples of membrane proteins. Methods Enzymol. 394, 350–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Opella, S.J., Ma, C. & Marassi, F.M. Nuclear magnetic resonance of membrane-associated peptides and proteins. Methods Enzymol. 339, 285–313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ketchem, R., Roux, B. & Cross, T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Ram, P. & Prestegard, J.H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim. Biophys. Acta 940, 289–294 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Sanders, C.R. II & Prestegard, J.H. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys. J. 58, 447–460 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanders, C.R. II & Schwonek, J.P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31, 8898–8905 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Sanders, C.R., Hare, B.J., Howard, K.P. & Prestegard, J.H. Magnetically-oriented phospholipids micelles as a tool for the study of membrane associated molecules. Prog. NMR Spectrosc. 26, 421–444 (1994).

    Article  CAS  Google Scholar 

  8. Smirnov, A.I. & Poluektov, O.G. Substrate-supported lipid nanotube arrays. J. Am. Chem. Soc. 125, 8434–8435 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Gaede, H.C., Luckett, K.M., Polozov, I.V. & Gawrisch, K. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores. Langmuir 20, 7711–7719 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lorigan, G.A. et al. Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays. J. Am. Chem. Soc. 126, 9504–9505 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chekmenev, E.Y. et al. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. J. Magn. Reson. 173, 322–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hallock, K.J., Henzler Wildman, K., Lee, D.-K. & Ramamoorthy, A. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys. J. 82, 2499–2503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Angelis, A.A. et al. High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J. Am. Chem. Soc. 126, 15340–15341 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Park, S.H., De Angelis, A.A., Nevzorov, A.A. & Opella, S.J. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles. Biophys. J. 91, 3032–3042 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Durr, U.H.N., Yamamoto, K., Im, S.-C., Waskell, L. & Ramamoorthy, A. Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J. Am. Chem. Soc. 129, 6670–6671 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Triba, M.N., Devaux, P.F. & Warschawski, D.E. Effects of lipid chain length and unsaturation on bicelle stability. A phosphorus NMR study. Biophys. J. 91, 1357–1367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas, B., Cardon, T.B., Dave, P.C. & Lorigan, G.A. Magnetically aligned phospholipid bilayers with large q ratios stabilize magnetic alignment with high order in the gel and L phases. Langmuir 21, 4291–4298 (2005).

    Article  Google Scholar 

  18. Prosser, R.S., Hunt, S.A., DiNatale, J.A. & Vold, R.R. Magnetically aligned membrane model systems with positive order parameter: switching the sign of S-zz with paramagnetic ions. J. Am. Chem. Soc. 118, 269–270 (1996).

    Article  CAS  Google Scholar 

  19. Inbaraj, J.J., Cardon, T.B., Laryukhin, M., Grosser, S.M. & Lorigan, G.A. Determining the topology of integral membrane peptides using EPR spectroscopy. J. Am. Chem. Soc. 128, 9549–9554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Angelis, A.A., Howell, S.C. & Opella, S.J. Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts. J. Magn. Reson. 2183, 329–332 (2006).

    Article  Google Scholar 

  21. Vold, R.R., Prosser, R.S. & Deese, A.J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J. Biomol. NMR 9, 329–335 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Loudet, C. et al. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales. A study combining synthesis, solid-state NMR, TEM and SAXS. Biophys. J. 92, 3949–3959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaemers, S. & Bax, A. Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. J. Am. Chem. Soc. 123, 12343–12352 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Nieh, M. Magnetically alignable phase of phospholipid 'bicelle' mixtures is a chiral nematic made up of wormlike micelles. Langmuir 20, 7893–7897 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Nevzorov, A.A., De Angelis, A.A., Park, S.H. & Opella, S.J. in NMR Spectroscopy of Biological Solids (ed. Ramamoorthy, A.) 177–190 (CRC Press, Boca Raton, FL, 2005).

    Google Scholar 

  26. De Angelis, A.A., Howell, S.C., Nevzorov, A.A. & Opella, S.J. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 12256–12267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, S.H. et al. High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J. Am. Chem. Soc. 128, 7402–7403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  PubMed  Google Scholar 

  29. Dvinskikh, S.V., Durr, U.H.N., Yamamoto, K. & Ramamoorty, A. High-resolution 2D NMR spectroscopy of bicelles to measure the membrane interaction of ligands. J. Am. Chem. Soc. 129, 794–802 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dvinskikh, S.V., Yamamoto, K., Ulrich, H.N., Dürr, U.H.N. & Ramamoorthy, A. Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles. J. Magn. Reson. 184, 228–235 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by research grants RO1EB 001966, RO1GM075877 and RO1EB005161, and utilized the Resource for NMR Molecular Imaging of Proteins, supported by grant P41EB002031 from the National Institute for Biomedical Imaging and Bioengineering. A.A.D.A. was supported by postdoctoral fellowship F32GM65833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J Opella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Angelis, A., Opella, S. Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2, 2332–2338 (2007). https://doi.org/10.1038/nprot.2007.329

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing