Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of magnetic nonviral gene transfer agents and magnetofection in vitro

Abstract

This protocol details how to design and conduct experiments to deliver nucleic acids to adherent and suspension cell cultures in vitro by magnetic force–assisted transfection using self-assembled complexes of nucleic acids and cationic lipids or polymers (nonviral gene vectors), which are associated with magnetic (nano) particles. These magnetic complexes are sedimented onto the surface of the cells to be transfected within minutes by the application of a magnetic gradient field. As the diffusion barrier to nucleic acid delivery is overcome, the full vector dose is targeted to the cell surface and transfection is synchronized. In this manner, the transfection process is accelerated and transfection efficiencies can be improved up to several 1,000-fold compared with transfections carried out with nonmagnetic gene vectors. This protocol describes how to accomplish the following stages: synthesis of magnetic nanoparticles for magnetofection; testing the association of DNA with the magnetic components of the transfection complex; preparation of magnetic lipoplexes and polyplexes; magnetofection; and data processing. The synthesis and characterization of magnetic nanoparticles can be accomplished within 3–5 d. Cell culture and transfection is then estimated to take 3 d. Transfected gene expression analysis, cell viability assays and calibration will probably take a few hours. This protocol can be used for cells that are difficult to transfect, such as primary cells, and may also be applied to viral nucleic acid delivery. With only minor alterations, this protocol can also be useful for magnetic cell labeling for cell tracking studies and, as it is, will be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized transfection efficiency in any cell type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Radiolabeling (iodination) of plasmid DNA and testing DNA association with magnetic nanoparticles in transfection complexes.
Figure 3: Enhanced GFP (eGFP) reporter gene expression and cell association of transfection complexes comprising magnetic nanoparticles with H441 human lung epithelial cells detected by microscopy.
Figure 4: Magnetofection versus lipofection efficiency.
Figure 5: Magnetofection versus lipofection efficiency in H441 human lung epithelial cells.
Figure 6: Magnetofection versus lipofection efficiency in Jurkat cells.

Similar content being viewed by others

References

  1. Plank, C., Scherer, F. & Rudolph, C. DNA Pharmaceuticals (ed. Schleef, M.) 55–116 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005).

    Google Scholar 

  2. Felgner, P.L. et al. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8, 511–512 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Plank, C., Anton, M., Rudolph, C., Rosenecker, J. & Krotz, F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin. Biol. Ther. 3, 745–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hughes, C., Galea-Lauri, J., Farzaneh, F. & Darling, D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol. Ther. 3, 623–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Mah, C. et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther. 6, 106–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Pandori, M.W., Hobson, D.A. & Sano, T. Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy to localized gene delivery. Virology 299, 204–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hirao, K. et al. Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field. Int. J. Oncol. 22, 1065–1071 (2003).

    CAS  PubMed  Google Scholar 

  8. Satoh, K. et al. Virus concentration using polyethyleneimine-conjugated magnetic beads for improving the sensitivity of nucleic acid amplification tests. J. Virol. Methods 114, 11–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Xiang, J.J. et al. IONP-PLL: a novel non-viral vector for efficient gene delivery. J. Gene Med. 5, 803–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Campos, S.K., Parrott, M.B. & Barry, M.A. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol. Ther. 9, 942–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Raty, J.K. et al. Enhanced gene delivery by avidin-displaying baculovirus. Mol. Ther. 9, 282–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, L. et al. Conjugation of lentivirus to paramagnetic particles via nonviral proteins allows efficient concentration and infection of primary acute myeloid leukemia cells. J. Virol. 79, 13190–13194 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Haim, H., Steiner, I. & Panet, A. Synchronized infection of cell cultures by magnetically controlled virus. J. Virol. 79, 622–625 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kadota, S., Kanayama, T., Miyajima, N., Takeuchi, K. & Nagata, K. Enhancing of measles virus infection by magnetofection. J. Virol. Methods 128, 61–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Morishita, N. et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem. Biophys. Res. Commun. 334, 1121–1126 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Isalan, M., Santori, M.I., Gonzalez, C. & Serrano, L. Localized transfection on arrays of magnetic beads coated with PCR products. Nat. Methods 2, 113–118 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hafeli, U.O. Magnetically modulated therapeutic systems. Int. J. Pharm. 277, 19–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Widder, K.J., Senyel, A.E. & Scarpelli, G.D. Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 158, 141–146 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Mah, C. et al. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Ther. 1, S239 (2000).

    Article  Google Scholar 

  20. Plank, C., Scherer, F., Schillinger, U. & Anton, M. Magnetofection: enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J. Gene. Med. 2, 24 (2000).

    Article  Google Scholar 

  21. Scherer, F. et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene. Ther. 9, 102–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Nesbeth, D. et al. Metabolic biotinylation of lentiviral pseudotypes for scalable paramagnetic microparticle-dependent manipulation. Mol. Ther. 13, 814–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Huth, S. et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med. 6, 923–936 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152, 167–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Schillinger, U. et al. Advances in magnetofection—magnetically guided nucleic acid delivery. J. Magnetism Magnetic Mater. 293, 501–508 (2005).

    Article  CAS  Google Scholar 

  26. Plank, C. et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, C. Sharpening the tools of RNA interference. Nat. Methods 3, 475–486 (2006).

    Article  CAS  Google Scholar 

  29. Krotz, F. et al. Magnetofection—a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. 7, 700–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Riess, JG. Fluorous micro-and nanophases with a biomedical perspective. Tetrahedron Fluorous Chem. 58, 4113–4131 (2002).

    Article  CAS  Google Scholar 

  32. Mykhaylyk, O. et al. Magnetic nanoparticle formulations for DNA and siRNA delivery. J. Magnetism Magnetic Mater. 311, 275–281 (2007).

    Article  CAS  Google Scholar 

  33. Mikhaylova, M. et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20, 2472–2477 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Prozorov, R., Yeshurun, Y., Prozorov, T. & Gedanken, A. Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles. Phys. Rev. B 59, 6956LP–6965 (1999).

    Article  Google Scholar 

  35. Kowalski, J.B. & Tallentire, A. Substantiation of 25 kGy as a sterilization dose: a rational approach to establishing verification dose. Radiat. Phys. Chem. 54, 55–64 (1999).

    Article  CAS  Google Scholar 

  36. Azzam, T. & Domb, A.J. Current developments in gene transfection agents. Curr. Drug Deliv. 1, 165–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bonetta, L. The inside scoop—evaluating gene delivery methods. Nat. Methods 2, 875–883 (2005).

    Article  CAS  Google Scholar 

  38. Moghimi, S.M. et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11, 990–995 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lungwitz, U., Breunig, M., Blunk, T. & Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60, 247–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Boeckle, S. et al. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 6, 1102–1111 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Mueller, H., Kassack, M.U. & Wiese, M. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen. 9, 506–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Berridge, M.V., Herst, P.M. & Tan, A.S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Berridge, M.V., Tan, A.S. & Hilton, C.J. Cyclic adenosine monophosphate promotes cell survival and retards apoptosis in a factor-dependent bone marrow-derived cell line. Exp. Hematol. 21, 269–276 (1993).

    CAS  PubMed  Google Scholar 

  45. Terebesi, J., Kwok, K.Y. & Rice, K.G. Iodinated plasmid DNA as a tool for studying gene delivery. Anal. Biochem. 263, 120–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. Hammerschmid for the help with the flow cytometry analysis, and Dr. Joachim Aigner for the help with microscopy studies and valuable discussions. This work was supported by the European Union through the FP6-LIFESCIHEALTH Project “Improved precision of nucleic acid based therapy of cystic fibrosis” under contract no. 005213 as well as by the German Ministry of Education and Research, Nanobiotechnology grants 13N8186 and 13N8538. Financial support of the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Mykhaylyk.

Ethics declarations

Competing interests

Christian Plank is a co-founder of OZ Biosciences, Marseille, France. OZ Biosciences manufactures and sells magnetofection reagents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mykhaylyk, O., Antequera, Y., Vlaskou, D. et al. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2, 2391–2411 (2007). https://doi.org/10.1038/nprot.2007.352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.352

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing