Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging

Abstract

Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C2-BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging—an approach that is applicable to most peptide sequences. Fmoc-Trp(C2-BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C–C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C2-BODIPY)-OH (3–4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6–7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1–2 d for imaging).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Synthesis and chemical characterization of amino acid Fmoc-Trp(C2-BODIPY)-OH (1).
Figure 4
Figure 5: BODIPY-cPAF26, a fluorogenic peptide with high affinity for fungal cells.
Figure 6: Live-cell fluorescence imaging of fungal pathogens.
Figure 7: Time-course fluorescence imaging of A. fumigatus with BODIPY-cPAF26.
Figure 8: Time-course illustration of the reaction setup for the synthesis of compound 3 under a N2 atmosphere.
Figure 9: Time-course illustration of the reaction setup for the synthesis of amino acid 1.
Figure 10: Setup for the solid-phase synthesis of BODIPY-cPAF26.
Figure 11: Experimental setup for the hydrogenation of the cyclic protected peptide.
Figure 12: Image showing BODIPY-cPAF26 and fluorescein under excitation with 365-nm light using a hand-held UV lamp.
Figure 13: Image of A549 cells in a 96-well plate after detergent incubation.
Figure 14: Plate layout for the antifungal activity assays.

Similar content being viewed by others

References

  1. Schumacher, D. & Hackenberger, C.P. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr. Opin. Chem. Biol. 22, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, W., Brock, A., Chen, S., Chen, S. & Schultz, P.G. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298–304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nikic, I. et al. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245–2249 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V. & Lemke, E.A. Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780–791 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Vendrell, M. et al. Novel ergopeptides as dual ligands for adenosine and dopamine receptors. J. Med. Chem. 50, 3062–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, L. et al. Synthesis of a cytotoxic amanitin for bioorthogonal conjugation. Chembiochem 16, 1420–1425 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Reiner, T. et al. Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog. Proc. Natl. Acad. Sci. USA 108, 12815–12820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Demeter, O. et al. A double-clicking bis-azide fluorogenic dye for bioorthogonal self-labeling peptide tags. Chem. Eur. J. 22, 6382–6388 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Gential, G.P. et al. Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates. Bioorg. Med. Chem. Lett. 26, 3641–3645 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J.S., Vendrell, M. & Chang, Y.-T. Diversity-oriented optical imaging probe development. Curr. Opin. Chem. Biol. 15, 760–767 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Carlson, J.C., Meimetis, L.G., Hilderbrand, S.A. & Weissleder, R. BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. Angew. Chem. Int. Ed. Engl. 52, 6917–6920 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Meimetis, L.G., Carlson, J.C., Giedt, R.J., Kohler, R.H. & Weissleder, R. Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging. Angew. Chem. Int. Ed. Engl. 53, 7531–7534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shieh, P. et al. CalFluors: a universal motif for fluorogenic azide probes across the visible spectrum. J. Am. Chem. Soc. 137, 7145–7151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ban, H., Gavrilyuk, J. & Barbas, C.F. III. Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J. Am. Chem. Soc. 132, 1523–1525 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Mendive-Tapia, L. et al. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

    Article  PubMed  Google Scholar 

  17. Osberger, T.J., Rogness, D.C., Kohrt, J.T., Stepan, A.F. & White, M.C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 537, 214–219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zwanziger, D. et al. Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug. Chem. 19, 1430–1438 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Sibrian-Vazquez, M. et al. Synthesis and properties of cell-targeted Zn(II)-phthalocyanine-peptide conjugates. Bioconjug. Chem. 18, 410–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Vendrell, M., Samanta, A., Yun, S.-W. & Chang, Y.-T. Synthesis and characterization of a cell-permeable near-infrared fluorescent deoxyglucose analogue for cancer cell imaging. Org. Biomol. Chem. 9, 4760–4762 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Reiner, T. et al. Near-infrared fluorescent probe for imaging of pancreatic beta cells. Bioconjug. Chem. 21, 1362–1368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendive-Tapia, L. et al. Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nat. Commun. 7, 10940 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopez-Garcia, B., Perez-Paya, E. & Marcos, J.F. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol. 68, 2453–2460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subiros-Funosas, R. et al. A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chem. Commun. 53, 945–948 (2017).

    Article  CAS  Google Scholar 

  25. Vendrell, M. et al. Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun. 47, 8424–8426 (2011).

    Article  CAS  Google Scholar 

  26. Yraola, F. et al. A re-evaluation on the use of Rink, BAL and PAL resins and linkers. QSAR Comb. Sci. 23, 145–152 (2004).

    Article  CAS  Google Scholar 

  27. Turcatti, G. et al. Characterization of non-peptide antagonist and peptide agonist binding sites of the NK1 receptor with fluorescent ligands. J. Biol. Chem. 272, 21167–21175 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, B.E. et al. Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296, 1700–1703 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Koopmans, T., van Haren, M., van Ufford, L.Q., Beekman, J.M. & Martin, N.I. A concise preparation of the fluorescent amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine and extension of its utility in solid phase peptide synthesis. Bioorg. Med. Chem. 21, 553–559 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ge, J., Li, L. & Yao, S.Q. A self-immobilizing and fluorogenic unnatural amino acid that mimics phosphotyrosine. Chem. Commun. 47, 10939–10941 (2011).

    Article  CAS  Google Scholar 

  31. Nitz, M., Mezo, A.R., Ali, M.H. & Imperiali, B. Enantioselective synthesis and application of the highly fluorescent and environment-sensitive amino acid 6-(2-dimethylaminonaphthoyl) alanine (DANA). Chem. Commun. 17, 1912–1913 (2002).

    Article  CAS  Google Scholar 

  32. Vazquez, E.M., Rothman, D.M. & Imperiali, B. A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Org. Biomol. Chem. 2, 1965–1966 (2004).

    Article  CAS  Google Scholar 

  33. Sainlos, M. & Imperiali, B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based ′building block′ approach. Nat. Protoc. 2, 3210–3218 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Venkatraman, P. et al. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nat. Chem. Biol. 3, 222–228 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vazquez, M.E., Blanco, J.B. & Imperiali, B. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J. Am. Chem. Soc. 127, 1300–1306 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Loving, G. & Imperiali, B. A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: a powerful tool for the study of dynamic protein interactions. J. Am. Chem. Soc. 130, 13630–13638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kowada, T., Maeda, H. & Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 44, 4953–4972 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Loudet, A. & Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 107, 4891–4932 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X., Engle, K.M., Wang, D.H. & Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. Engl. 48, 5094–5115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lebrasseur, N. & Larrosa, I. Room temperature and phosphine free palladium catalyzed direct C-2 arylation of indoles. J. Am. Chem. Soc. 130, 2926–2927 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Basaric, N. et al. Synthesis and spectroscopic characterisation of BODIPY based fluorescent off-on indicators with low affinity for calcium. Org. Biomol. Chem. 3, 2755–2761 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz-Rodriguez, J., Albericio, F. & Lavilla, R. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. Chemistry 16, 1124–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Preciado, S., Mendive-Tapia, L., Albericio, F. & Lavilla, R. Synthesis of C-2 arylated tryptophan amino acids and related compounds through palladium-catalyzed C-H activation. J. Org. Chem. 78, 8129–8135 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, Y., Bauer, M., Ploog, J. & Ackermann, L. Late-stage diversification of peptides by metal-free C-H arylation. Chemistry 20, 13099–13102 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Atherton, E., Bury, C., Sheppard, R.C. & Williams, B.J. Stability of fluorenylmethoxycarbonylamino groups in peptide synthesis. Cleavage by hydrogenolysis and by dipolar aprotic solvents. Tet. Lett. 3041–3042 (1979).

  47. Welling, M.M. et al. Development of a hybrid tracer for SPECT and optical imaging of bacterial infections. Bioconjug. Chem. 26, 839–849 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Akram, A.R. et al. A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem. Sci. 6, 6971–6979 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Munoz, A. et al. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells. PLoS One 8, e54813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. White, C.J. & Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Davis, R.H. & Perkins, D.D. Timeline: Neurospora: a model of model microbes. Nat. Rev. Genet. 3, 397–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Brown, G.D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv113 (2012).

    Article  CAS  Google Scholar 

  53. Kaiser, E., Colescott, R.L., Bossinger, C.D. & Cook, P.I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970).

    Article  CAS  PubMed  Google Scholar 

  54. Gisin, B.F. & Merrifield, R.B. Carboxyl-catalyzed intramolecular aminolysis. Side reaction in solid-phase peptide synthesis. J. Am. Chem. Soc. 94, 3102–3016 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.M.-T. acknowledges the support of MECD-Spain for an FPU Scholarship. R.S.-F. acknowledges the support of an MSCA Individual Fellowship (659046). R.L. acknowledges the support of DGICYT-Spain (CTQ2015-67870-P) and Generalitat de Catalunya (2014 SGR 137). M.V. acknowledges the support of the Medical Research Council, a Marie Curie Integration Grant (333847) and the Biotechnology and Biological Sciences Research Council (BB/M025160/1). The authors thank Luxembourg Bio Technologies (Rehovot) for kindly supplying OxymaPure and derived reagents.

Author information

Authors and Affiliations

Authors

Contributions

L.M.-T. performed all compound syntheses and chemical characterization; R.S.-F. performed in vitro spectral and biological characterization; C.Z. and N.D.R. designed and performed the experiments with fungal cells; F.A., R.L. and M.V. designed the chemical syntheses; R.L. and M.V. supervised the project; M.V. analyzed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rodolfo Lavilla or Marc Vendrell.

Ethics declarations

Competing interests

The University of Edinburgh has filed an invention disclosure form to protect part of the technology described in this study.

Integrated supplementary information

Supplementary Figure 1 Analysis of the long-term stability of the amino acid 1 when stored as a solid at different temperatures.

HPLC-MS traces of the amino acid 1 after being stored in the dark for 4 months at r.t., 4 ºC, and -20 ºC. UV detection: 500 nm.

Supplementary Figure 2 Analysis of the long-term stability of the amino acid 1 when dissolved in organic solvents at different temperatures.

HPLC-MS traces of the amino acid 1 after being stored in the dark for 4 months in: a) DCM at -20 ºC, b) MeOH at 4 ºC, c) DMF at r.t. In c), the green arrow points at the remaining amino acid 1 and the main peaks correspond to Fmoc-removed side products. UV detection: 500 nm.

Supplementary Figure 3 Time-course analysis of the chemical integrity of BODIPY-cPAF26 and unlabeled linear PAF26 in proteolytic environments.

HPLC traces of BODIPY-cPAF26 (a) and unlabeled PAF26 (b) before incubation (top) and after incubation (bottom) at a concentration of 200 μM in a protease cocktail (1 mg L-1). Green arrows point at the peaks of intact BODIPY-cPAF26 and red arrows point at intact PAF26. UV detection: 280 nm. Purities were determined by integration of the peak areas in respective HPLC chromatograms at 280 nm.

Supplementary Figure 4 Electrospray analysis of BODIPY-cPAF26 and unlabeled PAF26 after 24 h incubation in a protease cocktail.

Both peptides (200 μM) were incubated in 1 mg L-1 of the protease cocktail, and their respective mass spectra were recorded on a Waters Micromass ZQ mass spectrometer (ESI positive mode). a) MS analysis of BODIPY-cPAF26 (exact mass: 1311 Da). b) MS analysis of unlabeled PAF26 (exact mass: 949 Da).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2. (PDF 777 kb)

Supplementary Video 1. Time-course high-resolution imaging of A. fumigatus upon treatment with BODIPY-cPAF26.

A. fumigatus cells were pretreated with a cell membrane counterstain (red) and imaged under a confocal microscope. Cells were then treated with BODIPY-cPAF26 (2 μM, green) and further imaged without any washing steps. The video shows the rapid fluorogenic response of BODIPY-cPAF26 upon interaction with the cell membrane of A. fumigatus. Scale bar, 5 μm. (AVI 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendive-Tapia, L., Subiros-Funosas, R., Zhao, C. et al. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging. Nat Protoc 12, 1588–1619 (2017). https://doi.org/10.1038/nprot.2017.048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing