Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging

Abstract

The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence anisotropy principles and measurements.
Figure 2: One-photon versus two-photon excitation.
Figure 3: Results from HT1080 cells incubated in PARPi-FL.
Figure 4: Setup overview.
Figure 5: Polarization control unit overview.
Figure 6: Noise contribution to fluorescence anisotropy images.
Figure 7: Optical characterization of three calibration solutions, ruthenium tris(bipyridyl) [Ru(bipy)3] in PBS (Ru in PBS), fluorescein in PBS (FL in PBS), pyridine 1 in propylene glycol (Py1 in PG).
Figure 8: GUI interface of the AnisotropyCalculation program.
Figure 9: PMT intensity responses across their dynamic ranges at different voltage settings.
Figure 10: Measurements of fluorescein at varying viscosities.
Figure 11: Fluorescence anisotropy measurements for receptor/binding quantification.
Figure 12: Imaging phantom for fluorescence anisotropy imaging.
Figure 13: GUI interface of the OnLine program.
Figure 14: Fluorescence anisotropy time-lapse imaging.
Figure 15: Two-photon fluorescence anisotropy imaging of drug-target engagement.

Similar content being viewed by others

References

  1. Vinegoni, C. et al. Advances in measuring single-cell pharmacokinetics and pharmacology in vivo. Drug Discov. Today 20, 1087–1092 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, M.A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314 (2015).

    Article  Google Scholar 

  3. Laughney, A.M. et al. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl. Med. 6, 261 (2014).

    Article  CAS  Google Scholar 

  4. Dubach, J.M. et al. In vivo imaging of specific drug-target binding at subcellular resolution. Nat. Commun. 5, 3946 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Molina, D.M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  CAS  Google Scholar 

  6. Savitski, M.M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Grimwood, S. & Hartig, P.R. Target site occupancy: emerging generalizations from clinical and preclinical studies. Pharmacol. Ther. 122, 281–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Matthews, P.M., Rabiner, E.A., Passchier, J. & Gunn, R.N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X.H. et al. Molecular imaging of drug transit through the blood–brain barrier with MALDI mass spectrometry imaging. Sci. Rep. 3, 2859 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller, M.A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv. Drug Deliv. Rev. http://dx.doi.org/10.1016/j.addr.2016.05.023 (2016).

  11. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gough, A.H. & Taylor, D.L. Fluorescence anisotropy imaging microscopy maps calmodulin-binding during cellular contraction and locomotion. J. Cell Biol. 121, 1095–1107 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Plenum Press, 1983).

  14. Lakowicz, J.R. Principles of Fluorescence Spectroscopy 2nd edn. (Kluwer Academic/Plenum Publishers, 1999).

  15. Dix, J.A. & Verkman, A.S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Biophys. J. 57, 231–240 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swaminathan, R., Hoang, C.P. & Verkman, A.S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foster, T.H., Pearson, B.D., Mitra, S. & Bigelow, C.E. Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope. Photochem. Photobiol. 81, 1544–1547 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, Z., Huang, C.C. & Tan, W. Nuclease resistance of telomere-like oligonucleotides monitored in live cells by fluorescence anisotropy imaging. Anal. Chem. 78, 1478–1484 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Bigelow, C.E., Vishwasrao, H.D., Frelinger, J.G. & Foster, T.H. Imaging enzyme activity with polarization-sensitive confocal fluorescence microscopy. J. Microsc. 215, 24–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Li, W., Wang, Y., Shao, H., He, Y. & Ma, H. Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy. Microsc. Res. Tech. 70, 390–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bigelow, C.E., Conover, D.L. & Foster, T.H. Confocal fluorescence spectroscopy and anisotropy imaging system. Opt. Lett. 28, 695–697 (2003).

    Article  PubMed  Google Scholar 

  22. Chan, F.T.S., Kaminski, C.F. & Kaminski-Schierle, G.S. HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. ChemPhysChem. 12, 500–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Hedde, P.N., Ranjit, S. & Gratton, E. 3D fluorescence anisotropy imaging using selective plane illumination microscopy. Opt. Express 23, 22308–22317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yengo, C.M. & Berger, C.L. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr. Opin. Pharmacol. 10, 731–737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gradinaru, C.C., Marushchak, D.O., Samim, M. & Krull, U.J. Fluorescence anisotropy: from single molecules to live cells. Analyst 135, 452–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Suhling, K., Levitt, J. & Chung, P.H. Time-resolved fluorescence anisotropy imaging. In Fluorescence Spectroscopy and Microscopy (eds. Engelborghs, Y. & Visser, J.W.G.) (Springer Science, 2014).

  27. Jameson, D.M. & Ross, J.A. Fluorescence polarization/anisotropy in diagnostic and imaging. Chem. Rev. 110, 2685–2708 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matthews, D.R. et al. Time-lapse FRET microscopy using fluorescence anisotropy. J. Microsc. 237, 51–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Turetsky, A., Kim, E., Kohler, R.H., Miller, M.A. & Weissleder, R. Single cell imaging of Bruton's tyrosine kinase using an irreversible inhibitor. Sci. Rep. 4, 4782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reiner, T. et al. Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. Neoplasia 14, 169–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thurber, G.M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Hottiger, M.O. Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu. Rev. Biochem. 84, 227–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Barkauskaite, E., Jankevicius, G. & Ahel, I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58, 935–946 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Caldecott, K.W. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair 19, 108–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Scott, C.L., Swisher, E.M. & Kaufmann, S.H. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol. 33, 1397–1406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Curtin, N.J. & Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med. 34, 1217–1256 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. O'Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Shen, Y., Aoyagi-Scharber, M. & Wang, B. Trapping poly (ADP-ribose) polymerase. J. Pharmacol. Exp. Ther. 353, 446–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Rouleau, M., Patel, A., Hendzel, M.J., Kaufmann, S.H. & Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ossovskaya, V., Koo, I.C., Kaldjian, E.P., Alvares, C. & Sherman, B.M. Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1, 812–821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bièche, I., Murcia, G.D. & Lidereau, R. Poly (ADP-ribose) polymerase gene expression status and genomic instability in human breast cancer. Clin. Cancer Res. 2, 1163–1167 (1996).

    PubMed  Google Scholar 

  43. Rojo, F. et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann. Oncol. 23, 1156–1164 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Alanazi, M. et al. Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population. PLoS One 8, e855411 (2013).

    Google Scholar 

  45. Galia, A. et al. PARP-1 protein expression in glioblastoma multiforme. Eur. J. Histochem. 56, e9 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barton, V.N. et al. PARP1 expression in pediatric central nervous system tumors. Pediatr. Blood Cancer 53, 1227–1230 (2009).

    Article  PubMed  Google Scholar 

  47. Staibano, S. et al. Poly (adenosine diphosphate-ribose) polymerase 1 expression in malignant melanomas from photoexposed areas of the head and neck region. Hum. Pathol. 36, 724–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Reiner, T., Earley, S., Turetsky, A. & Weissleder, R. Bioorthogonal small-molecule ligands for PARP1 imaging in living cells. Chembiochem 11, 2374–2377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thurber, G.M. et al. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol. Cancer Ther. 13, 986–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irwin, C.P. et al. PARPi-FL – a fluorescent PARP1 inhibitor for glioblastoma imaging. Neoplasia 16, 432–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kossatz, S. et al. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent. Sci. Rep. 6, 21371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yan, Y. & Marriot, G. Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol. 360, 561–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Koshioka, M., Sasaki, K. & Masuhara, H. Time-dependent fluorescence depolarization analysis in three-dimensional microspectroscopy. Appl. Spectrosc. 49, 224–228 (1995).

    Article  CAS  Google Scholar 

  54. Ha, T., Laurence, T.A., Chemla, D.S. & Weiss, S. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103, 6839–6850 (1999).

    Article  CAS  Google Scholar 

  55. Becker, W. Advanced Time-Correlated Single Photon Counting Techniques. (eds. Castleman, A.W., Toennis, J.P., & Zinth, W.) (Springer Series in Chemical Physics, 2005).

  56. Jameson, D.M., Weber, G., Spencer, R.D. & Mitchell, G. Fluorescence polarization: measurements with a photon counting photometer. Rev. Sci. Instrum. 49, 510–514 (1978).

    Article  CAS  PubMed  Google Scholar 

  57. Benninger, R.K.P., Ashby, W.J., Ring, E.A. & Piston, D.W. A single-photon counting detector for increased sensitivity in two-photon laser scanning microscopy. Opt. Lett. 33, 2895–2897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moon, S. & Kim, D.Y. Analog single-photon counter for high-speed scanning microscopy. Opt. Express 16, 13990–14003 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Hoover, E.E. & Squier, J.A. Advances in multiphoton microscopy technology. Nat. Photonics 7, 93–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Driscoll, J.D. et al. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Buehler, C., Kim, K.H., Greuter, U., Schlumpf, N. & So, P.T.C. Single-photon counting multicolor multiphoton fluorescence microscope. J. Fluoresc. 15, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Dix, J.A. & Verkman, A.S. Mapping of fluorescence anisotropy in living cells by ratio imaging: application to cytoplasmic viscosity. Biophys. J. 57, 231–240 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson, R.B., Gryczynski, I. & Malicka, J. Fluorescence polarization standards for high-throughput screening and imaging. BioTechniques 32, 42 (2002).

    Article  Google Scholar 

  64. van Kempen, G.M.P. & van Vliet, L.J. Mean and variance of ratio estimators used in fluorescence ratio imaging. Cytometry 39, 300–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Lidke, K.A., Rieger, B., Lidke, D.S. & Jovin, T.M. The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans. Image Process. 14, 1237–1245 (2005).

    Article  PubMed  Google Scholar 

  66. Siegel, J. et al. Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl. Opt. 42, 2995–3004 (2003).

    Article  PubMed  Google Scholar 

  67. Suhling, K. et al. Time-resolved fluorescence anisotropy imaging (TR-FAIM) applied to live cells. Opt. Lett. 29, 584–586 (2004).

    Article  PubMed  Google Scholar 

  68. Xu, C. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    Article  CAS  Google Scholar 

  69. Weber, G. Dependence of polarization of the fluorescence on the concentration. Trans. Faraday Soc. 50, 552–555 (1954).

    Article  CAS  Google Scholar 

  70. Yang, K.S., Budin, G., Reiner, T., Vinegoni, C. & Weissleder, R. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. Engl. 51, 6598–6603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, E. et al. Optimized near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjug. Chem. 26, 1513–1518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fu, W. et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and cells. eLife 3, e04631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mikula, H., Stapleton, S., Kohler, R.H., Vinegoni, C. & Weissleder, R. Design and development of fluorescent vemurafenib analogs for in vivo imaging. Theranostics 7, 1257–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, E., Yang, K. & Weissleder, R. Bioorthogonal small molecule imaging agents allow single-cell imaging of MET. PLoS One 8, e81275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller, M.A. et al. Tumour-associated macrophages act as a slow-release reservoir of nanotherapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Earley, S. et al. In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single cell resolution. Cancer Res. 72, 2949–2956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang, K.S., Budin, G., Tassa, C., Kister, O. & Weissleder, R. Bioorthogonal approach to identify unsuspected drug targets in live cells. Angew. Chem. Int. Ed. Engl. 52, 10593–10597 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, K.S., Kohler, R.H., Landon, M., Giedt, R. & Weissleder, R. Single cell resolution in vivo imaging of DNA damage following PARP inhibition. Sci. Rep. 5, 10129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller, M.A., Askevold, B., Yang, K.S., Kohler, R.H. & Weissleder, R. Platinum compounds for high-resolution in vivo cancer imaging. Chem. Med. Chem. 9, 1131–1135 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Song, Y., Suntharalingam, K., Yeung, J.S., Royzen, M. & Lippard, S.J. Synthesis and characterization of Pt(IV) fluorescein conjugates to investigate Pt(IV) intracellular transformations. Bioconjug. Chem. 24, 1733–1740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Orth, J.D. et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 71, 4608–4616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chittajallu, D.R. et al. In vivo cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nat. Methods 12, 577–585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meimetis, L.G. et al. Fluorescent vinblastine probes for live cell imaging. Chem. Commun. 52, 9953–9956 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded in part by National Institutes of Health (NIH) grants RO1-EB010011, RO1-HL122208 and P50GM107618. Investigators at Memorial Sloan Kettering Cancer Center were funded in part by NIH grant P30 CA008748 and investigators in Europe were funded by the EC Seventh Framework Programme under grant agreement no. 622182.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the paper. C.V., R.M., P.F.F. and R.W., along with others, primarily developed the technique. S. Shah and I.G. conducted one-photon experiments. C.V. and P.F.F. wrote the software. S.L. designed and machined the systems components. A.E.N., C.B., R.M. and T.R. performed the synthesis. S. Stapleton prepared cell cultures.

Corresponding author

Correspondence to Claudio Vinegoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 PARPi-FL.

Chemical structure (a) and analytical HPLC chromatogram (b) of PARPi-FL.

Supplementary Figure 2 Image Acquisition Control window of the Olympus FluoView program.

The interface allows to control the PMT voltage settings, to initiate acquisitions and image averaging. Image of FLUOVIEW program adapted with permission from Olympus.

Supplementary Figure 3 Acquisition Setting window of the Olympus FluoView program.

The interface allows to set image acquisition dwell time, size, zoom factor, excitation wavelength selection and laser power. Image of FLUOVIEW program adapted with permission from Olympus.

Supplementary Figure 4 Acquired Image window of the Olympus FluoView program.

The two images (red boxes 1,2) show simultaneous acquisition of fluorescence emission at two orthogonal state of polarization as detected at PMT3 and PMT4, for a solution of fluorescein diluted in a mixture of water-glycerol (w/w) at 95%. Image of FLUOVIEW program adapted with permission from Olympus.

Supplementary Figure 5 Alignment polarization control unit.

Laser intensity as measured at the back-aperture of the objective, as a function of the half-waveplate angle. Light is measured after passing through a near infrared linear polarizer parallel to the microscope's Y axis (Fig. 4a).

Supplementary Figure 6 LightPath & Dyes window of the Olympus FluoView program.

The interface allows to select the dichroic, imaging path, and the imaging PMTs for simultaneous dual channel detection. Image of FLUOVIEW program adapted with permission from Olympus.

Supplementary Figure 7 GUI interface of the BackgroundEstimation.exe.

GUI interface of the BackgroundEstimation program, necessary to calculate the dark noise background correction.

Supplementary Figure 8 Closed bath imaging chamber.

(a-c) Different views of the closed bath imaging chamber for time measurements of drug target engagement. 1, inflow tubing connected to the perfusion manifold; 2, cell-seeded coverslip; 3, tubing connected to the vacuum outlet; 4, suction reservoir. The 2x dry objective, is used to find cell-seeded areas on the imaging coverslip.

Supplementary Figure 9 GUI interface of the OffLine.exe.

GUI interface of the OffLine program, for image processing, calculation and visualization of fluorescence anisotropy images for data previously acquired.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–9. (PDF 1979 kb)

Supplementary Data 1

A .zip file containing the STL file for the assembly of the polarization control unit. (ZIP 8201 kb)

Supplementary Data 2

A .zip file containing the STL files for the 3D printing and drawing of the polarization filter cube. (ZIP 331 kb)

Supplementary Data 3

A .zip file containing a longitudinal data set acquired in a perfusion chamber during the drug loading and washing phase, calibration measurements for high and low values of anisotropy, and data for cells at different time points during the loading and washing time. (ZIP 13205 kb)

Supplementary Software

A .zip file containing the software for the OnLine and OffLine elaboration and visualization of the fluorescence anisotropy images, and for calculating the background noise subtraction and average anisotropy: OnLine.exe, OffLine.exe, BackgroundEstimation.exe, AnisotropyCalculation.exe. (ZIP 23538 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinegoni, C., Fumene Feruglio, P., Brand, C. et al. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 12, 1472–1497 (2017). https://doi.org/10.1038/nprot.2017.043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research