Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm

Abstract

X-ray crystallography is the predominant source of structural information for biological macromolecules, providing fundamental insights into biological function. The availability of robust and user-friendly software to process the collected X-ray diffraction images makes the technique accessible to a wider range of scientists. iMosflm/MOSFLM (http://www.mrc-lmb.cam.ac.uk/harry/imosflm) is a software package designed to achieve this goal. The graphical user interface (GUI) version of MOSFLM (called iMosflm) is designed to guide inexperienced users through the steps of data integration, while retaining powerful features for more experienced users. Images from almost all commercially available X-ray detectors can be handled using this software. Although the program uses only 2D profile fitting, it can readily integrate data collected in the 'fine phi-slicing' mode (in which the rotation angle per image is less than the crystal mosaic spread by a factor of at least 2), which is commonly used with modern very fast readout detectors. The GUI provides real-time feedback on the success of the indexing step and the progress of data processing. This feedback includes the ability to monitor detector and crystal parameter refinement and to display the average spot shape in different regions of the detector. Data scaling and merging tasks can be initiated directly from the interface. Using this protocol, a data set of 360 images with 2,000 reflections per image can be processed in 4 min.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The iMosflm images window.
Figure 2: The iMosflm image display window.
Figure 3: The iMosflm 'Strategy' window.
Figure 4: The iMosflm 'Cell Refinement' window.
Figure 5: The iMosflm pane for the 'Integration' task.

Similar content being viewed by others

References

  1. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  2. Arndt, U.W. & Wonacott, A.J. The Rotation Method in Crystallography (North-Holland Publishing, Amsterdam, The Netherlands, 1977).

  3. Nyborg, J. & Wonacott, A.J. Computer programs. In The Rotation Method in Crystallography pp. 139–152 (North-Holland Publishing, Amsterdam, The Netherlands, 1977).

  4. Leslie, A.G.W. & Powell, H.R. Processing diffraction data with MOSFLM. In Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer, The Netherlands, 2007).

  5. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. iMosflm: a new graphical interface for diffraction image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  6. Katona, G. et al. Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center. Nat. Struct. Mol. Biol. 12, 630–631 (2005).

    Article  CAS  Google Scholar 

  7. Aoyama, H. et al. A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Proc. Natl. Acad. Sci. USA 106, 2165–2169 (2009).

    Article  CAS  Google Scholar 

  8. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    Article  CAS  Google Scholar 

  9. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    Article  CAS  Google Scholar 

  10. Morales-Rios, E., Montgomery, M.G., Leslie, A.G.W. & Walker, J.E. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proc. Natl. Acad. Sci. USA 112, 13231–13236 (2015).

    Article  CAS  Google Scholar 

  11. McCusker, E.C. et al. Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat. Commun. 3, 1102 (2012).

    Article  Google Scholar 

  12. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  Google Scholar 

  13. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  Google Scholar 

  14. Cheung, A.C.M., Sainsbury, S. & Cramer, P. Structural basis of initial RNA polymerase II transcription. EMBO J. 30, 4755–4763 (2011).

    Article  CAS  Google Scholar 

  15. Cheetham, G.M., Jeruzalmi, D. & Steitz, T.A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399, 80–83 (1999).

    Article  CAS  Google Scholar 

  16. Martick, M. & Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  Google Scholar 

  17. Hirata, K. et al. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat. Methods 11, 734–736 (2014).

    Article  CAS  Google Scholar 

  18. Nederlof, I., van Genderen, E., Li, Y.-W. & Abrahams, J.P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. D Biol. Crystallogr. 69, 1223–1230 (2013).

    Article  CAS  Google Scholar 

  19. Nannenga, B.L., Shi, D., Leslie, A.G.W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  Google Scholar 

  20. Waterman, D.G. et al. The DIALS framework for integration software. CCP4 Newslett. Protein Crystallogr. 49, 16–19 (2013).

    Google Scholar 

  21. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  22. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D Biol. Crystallogr. 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  23. Evans, P.R. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  24. Evans, P.R. & Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  25. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology Vol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Leslie, A.G.W. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  Google Scholar 

  28. Powell, H.R., Johnson, O. & Leslie, A.G.W. Autoindexing diffraction images with iMosflm. Acta Crystallogr. D Biol. Crystallogr. 69, 1195–1203 (2013).

    Article  CAS  Google Scholar 

  29. Karplus, P.A. & Diederichs, K. Assessing and maximising data quality in macromolecular crystallography. Curr. Opin. Struct. Biol. 34, 60–68 (2015).

    Article  CAS  Google Scholar 

  30. Hattne, J. et al. MicroED data collection and processing. Acta Crystallogr. A Found. Adv. 71, 353–360 (2015).

    Article  CAS  Google Scholar 

  31. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  32. Steller, I., Bolotovsky, R. & Rossmann, M.G. An algorithm for automatic indexing of oscillation images using Fourier analysis. J. Appl. Crystallogr. 30, 1036–1040 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MC_U105184325 to A.G.W.L.), CCP4 and the Biotechnology and Biological Sciences Research Council (BBSRC; BBF020384/1 to A.G.W.L.). We thank P.R. Evans for many useful discussions on data processing and reduction, and K. Manne for providing the images for the multi-lattice example.

Author information

Authors and Affiliations

Authors

Contributions

A.G.W.L. and H.R.P. wrote the manuscript. The original iMosflm graphical interface was designed by T.G.G.B. with assistance from H.R.P. and A.G.W.L. Further development of the graphical interface was performed by L.K. and O.J. The underlying MOSFLM program was developed by H.R.P. and A.G.W.L.

Corresponding author

Correspondence to Andrew G W Leslie.

Supplementary information

Supplementary Text and Figures

Supplementary Tutorial. (PDF 5097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powell, H., Battye, T., Kontogiannis, L. et al. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm. Nat Protoc 12, 1310–1325 (2017). https://doi.org/10.1038/nprot.2017.037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.037

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing