Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles

Abstract

The unique spectral signatures and biologically inert compositions of surface-enhanced resonance Raman scattering (SERRS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Our SERRS nanoparticles consist of a 60-nm gold nanoparticle core that is encapsulated in a 15-nm-thick silica shell wherein the resonant Raman reporter is embedded. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10−15 M) limits of detection. We provide ways of characterizing the optical properties of SERRS nanoparticles using UV/VIS and Raman spectroscopy, and their physicochemical properties using transmission electron microscopy and nanoparticle tracking analysis. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful i.v. administration of SERRS nanoparticles such that delineation of cancerous lesions can be achieved in vivo and ex vivo on resected tissues without the need for specific biomarker targeting. This straightforward, yet comprehensive, protocol—from initial de novo gold nanoparticle synthesis to SERRS nanoparticle contrast-enhanced preclinical Raman imaging in animal models—takes 96 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the workflow for SERRS-based Raman imaging of cancer in vivo.
Figure 2: Schematic representation of PEGylated SERRS nanoparticle synthesis.
Figure 3: Raman microscopy imaging setup.
Figure 4: Visual monitoring of SERRS nanoparticle synthesis.
Figure 5: SERRS nanoparticle characterization.
Figure 6: Raman spectra of two SERRS nanoparticles of different 'flavors'.
Figure 7: Contrast-enhanced Raman imaging of prostate neoplasia.

Similar content being viewed by others

References

  1. Andreou, C., Kishore, S.A. & Kircher, M.F. Surface-enhanced Raman spectroscopy: a new modality for cancer maging. J. Nucl. Med. 56, 1295–1299 (2015).

    Article  CAS  Google Scholar 

  2. Pence, I. & Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 45, 1958–1979 (2016).

    Article  CAS  Google Scholar 

  3. Long, D.A. Raman Spectroscopy (McGraw-Hill, 1977).

  4. Freudiger, C.W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  Google Scholar 

  5. Saar, B.G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  Google Scholar 

  6. Kircher, M.F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    Article  CAS  Google Scholar 

  7. Wang, Y.Q., Yan, B. & Chen, L.X. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113, 1391–1428 (2013).

    Article  CAS  Google Scholar 

  8. Hong, S.M. & Li, X. Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions. J. Nanomater. http://dx.doi.org/10.1155/2013/790323 (2013).

  9. Harmsen, S. et al. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat. Commun 6, 6570 (2015).

    Article  CAS  Google Scholar 

  10. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    Article  CAS  Google Scholar 

  11. Lombardi, J.R. & Birke, R.L. The theory of surface-enhanced Raman scattering. J. Chem. Phys. 136, 144704 (2012).

    Article  Google Scholar 

  12. Lombardi, J.R. & Birke, R.L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009).

    Article  CAS  Google Scholar 

  13. Harmsen, S. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med. 7, 271ra277 (2015).

    Article  Google Scholar 

  14. Fales, A.M., Yuan, H. & Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27, 12186–12190 (2011).

    Article  CAS  Google Scholar 

  15. Mulvaney, S.P., Musick, M.D., Keating, C.D. & Natan, M.J. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19, 4784–4790 (2003).

    Article  CAS  Google Scholar 

  16. Qian, X. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  17. Spaliviero, M. et al. Detection of lymph node metastases with SERRS nanoparticles. Mol. Imaging Biol. 18, 677–685 (2016).

    Article  CAS  Google Scholar 

  18. Garai, E. et al. High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J. Biomed. Opt. 18, 096008 (2013).

    Article  Google Scholar 

  19. Thakor, A.S. et al. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. Transl. Med. 3, 79ra33 (2011).

    Article  Google Scholar 

  20. Thakor, A.S. & Gambhir, S.S. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63, 395–418 (2013).

    Article  Google Scholar 

  21. Huang, R. et al. High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe. Theranostics 6, 1075–1084 (2016).

    Article  CAS  Google Scholar 

  22. Bodelon, G. et al. Au@pNIPAM SERRS tags for multiplex immunophenotyping cellular receptors and imaging tumor cells. Small 11, 4149–4157 (2015).

    Article  CAS  Google Scholar 

  23. Wang, Y.W. et al. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology (Singap. World Sci.) 2, 118–132 (2014).

    Google Scholar 

  24. Nima, Z.A. et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 4, 4752 (2014).

    Article  CAS  Google Scholar 

  25. Shaffer, T.M. et al. Silica nanoparticles as substrates for chelator-freelabeling of oxophilic radioisotopes. Nano Lett. 15, 864–868 (2015).

    Article  CAS  Google Scholar 

  26. Shaffer, T.M. et al. Stable radiolabeling of sulfur-functionalized silica nanoparticles with Copper-64. Nano Lett. 16, 5601–5604 (2016).

    Article  CAS  Google Scholar 

  27. Mulder, W.J., Jaffer, F.A., Fayad, Z.A. & Nahrendorf, M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 6, 239sr231 (2014).

    Article  Google Scholar 

  28. Suarez, S., Almutairi, A. & Christman, K.L. Micro- and nanoparticles for treating cardiovascular disease. Biomater. Sci. 3, 564–580 (2015).

    Article  CAS  Google Scholar 

  29. Kircher, M.F. & Willmann, J.K. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 264, 349–368 (2012).

    Article  Google Scholar 

  30. Kircher, M.F. & Willmann, J.K. Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263, 633–643 (2012).

    Article  Google Scholar 

  31. de Boer, E. et al. Optical innovations in surgery. Br. J. Surg. 102, e56–72 (2015).

    Article  CAS  Google Scholar 

  32. Andreou, C. et al. Imaging of liver tumors using surface-enhanced Raman scattering nanoparticles. ACS Nano 10, 5015–5026 (2016).

    Article  CAS  Google Scholar 

  33. von Maltzahn, G. et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21, 3175–3180 (2009).

    Article  CAS  Google Scholar 

  34. Fernandez-Lopez, C. et al. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25, 13894–13899 (2009).

    Article  CAS  Google Scholar 

  35. Fales, A.M., Yuan, H. & Vo-Dinh, T. Development of hybrid silver-coated gold nanostars for nonaggregated surface-enhanced Raman scattering. J. Phys. Chem. C Nanomater. Interfaces 118, 3708–3715 (2014).

    Article  CAS  Google Scholar 

  36. Khoury, C.G. & Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C 112, 18849–18859 (2008).

    Article  CAS  Google Scholar 

  37. Mir-Simon, B., Reche-Perez, I., Guerrini, L., Pazos-Perez, N. & Alvarez-Puebla, R.A. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem. Mater. 27, 950–958 (2015).

    Article  CAS  Google Scholar 

  38. Yuan, H. et al. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal. Chem. 85, 208–212 (2013).

    Article  CAS  Google Scholar 

  39. Turkevich, J., Stevenson, P.C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 55 http://dx.doi.org/10.1039/df9511100055 (1951).

  40. Wall, M.A., et al. Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv. Mat http://dx.doi.org/10.1002/adma.201605622 (2017).

  41. Stober, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  42. Han, X., Goebl, J., Lu, Z. & Yin, Y. Role of salt in the spontaneous assembly of charged gold nanoparticles in ethanol. Langmuir 27, 5282–5289 (2011).

    Article  CAS  Google Scholar 

  43. Bohndiek, S.E. et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

    Article  CAS  Google Scholar 

  44. Palonpon, A.F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).

    Article  CAS  Google Scholar 

  45. Matousek, P. et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 393–400 (2005).

    Article  CAS  Google Scholar 

  46. Stone, N. et al. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging - the next dimension. Chem. Sci. 2, 776–780 (2011).

    Article  CAS  Google Scholar 

  47. Butler, H.J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).

    Article  CAS  Google Scholar 

  48. Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  Google Scholar 

  49. Jokerst, J.V., Lobovkina, T., Zare, R.N. & Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.) 6, 715–728 (2011).

    Article  CAS  Google Scholar 

  50. Jokerst, J.V., Miao, Z., Zavaleta, C., Cheng, Z. & Gambhir, S.S. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small 7, 625–633 (2011).

    Article  CAS  Google Scholar 

  51. Cushing, S.K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    Article  CAS  Google Scholar 

  52. Pandikumar, A. et al. Titania@gold plasmonic nanoarchitectures: an ideal photoanode for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 60, 408–420 (2016).

    Article  CAS  Google Scholar 

  53. Zhou, N. et al. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 5, 29076–29097 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Shaffer (Department of Radiology, Stanford University) for verifying and reproducing our results using the described protocol. We further acknowledge the MSKCC Electron Microscopy and Molecular Cytology core facilities for technical support, and C. Andreou (MSKCC) for helpful suggestions. The following funding sources are acknowledged: NIH R01 EB017748 (M.F.K.); NIH K08 CA16396 (M.F.K.); a Pershing Square Sohn Prize by the Pershing Square Sohn Cancer Research Alliance (M.F.K.); The Dana Foundation Brain and Immuno-Imaging Grant (M.F.K.); a Dana Neuroscience Scholar Award (M.F.K.); an MSKCC Brain Tumor Center Grant (M.F.K.); an MSKCC Center for Molecular Imaging and Nanotechnology Grant (M.F.K.); an MSKCC Technology Development Grant (M.F.K.); a grant from the 'Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research'; a grant from 'The Center for Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center' (M.F.K.); a Geoffrey Beene Cancer Research Center at MSKCC Grant and Shared Resources Award (M.F.K.); a RSNA Research Scholar Grant (M.F.K.); a Society of MSKCC Research Grant (M.F.K.); and a grant from the National Natural Science Foundation (81401461; R.H.). We also acknowledge the grant-funding support provided by the MSKCC NIH Core Grant (P30-CA008748). M.F.K. is a Damon Runyon-Rachleff Innovator supported (in part) by the Damon Runyon Cancer Research Foundation (DRR-29-14).

Author information

Authors and Affiliations

Authors

Contributions

S.H. and M.A.W. designed the protocol, performed the experiments and wrote the paper. R.H. performed the animal experiments and tissue processing, and wrote the paper. M.F.K. supervised the researchers and edited the paper.

Corresponding author

Correspondence to Moritz F Kircher.

Ethics declarations

Competing interests

S.H., M.A.W. and M.F.K. have filed patent applications focused on SERRS nanoparticle composition and synthesis methods, and Raman detection hardware. M.F.K. is a cofounder of the startup company RIO Imaging, which has licensed these patents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmsen, S., Wall, M., Huang, R. et al. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat Protoc 12, 1400–1414 (2017). https://doi.org/10.1038/nprot.2017.031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.031

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer