Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis

Abstract

Visible-light-activated photoredox catalysts provide synthetic chemists with the unprecedented capability to harness reactive radicals through discrete, single-electron transfer (SET) events. This protocol describes the synthesis of two transition metal complexes, [Ir{dF(CF3)2ppy}2(bpy)]PF6 (1a) and [Ru(bpy)3](PF6)2 (2a), that are activated by visible light. These photoredox catalysts are SET agents that can be used to facilitate transformations ranging from proton-coupled electron-transfer-mediated cyclizations to C–C bond constructions, dehalogenations, and H-atom abstractions. These photocatalysts have been used in the synthesis of medicinally relevant compounds for drug discovery, as well as the degradation of biological polymers to access fine chemicals. These catalysts are prepared from IrCl3 and RuCl3, respectively, in three chemical steps. These steps can be described as a series of two ligand modifications followed by an anion metathesis. Using the cost-effective, scalable procedures described here, the ruthenium-based photocatalyst 2a can be synthesized in a 78% overall yield (8.1 g), and the iridium-based photocatalyst 1a can be prepared in a 56% overall yield (4.4 g). The total time necessary for the complete protocols ranges from 2 d for 2a to 5–7 d for 1a. Procedures for applying each catalyst in representative photoredox/Ni cross-coupling to form Csp3–Csp2 bonds using the appropriate radical precursor—organotrifluoroborates with 1a and bis(catecholato)alkylsilicates with 2a—are described. In addition, more traditional photoredox-mediated transformations are included as diagnostic tests for catalytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Redox reactions of photocatalysts.
Figure 3: Summary of representative Csp3–Csp2 bond formation processes via Ni, Cu, and Au photoredox cross-coupling dual catalysis.
Figure 4
Figure 5: Current progress made in photoredox dual catalytic cross-coupling reactions for the formation of Csp2–Csp2 and Csp2–Csp bonds.
Figure 6: Current progress made in photoredox dual catalysis cross-coupling reactions for the formation of Csp2–Y bonds.
Figure 7
Figure 8
Figure 9: Visual examples the two photocatalysts.

Similar content being viewed by others

References

  1. Douglas, J.J., Nguyen, J.D., Cole, K.P. & Stephenson, C.R.J. Enabling novel photoredox reactivity via photocatalyst selection. Aldrichim. Acta 47, 15–25 (2014).

    CAS  Google Scholar 

  2. Koike, T. & Akita, M. Visible-light radical reaction designed by Ru- and Ir-based photoredox catalysis. Inorg. Chem. Front. 1, 562–576 (2014).

    CAS  Google Scholar 

  3. Prier, C.K., Rankic, D.A. & MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukuzumi, S. & Ohkubo, K. Selective photocatalytic reactions with organic photocatalysts. Chem. Sci. 4, 561–574 (2013).

    CAS  Google Scholar 

  5. Xi, Y., Yi, H. & Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem. 11, 2387–2403 (2013).

    CAS  PubMed  Google Scholar 

  6. Tucker, J.W. & Stephenson, C.R.J. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem. 77, 1617–1622 (2012).

    CAS  PubMed  Google Scholar 

  7. Studer, A. & Curran, D.P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    CAS  Google Scholar 

  8. Juris, A. et al. Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988).

    CAS  Google Scholar 

  9. Duret, G., Quinlan, R., Bisseret, P. & Blanchard, N. Boron chemistry in a new light. Chem. Sci. 6, 5366–5382 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanss, D., Freys, J.C., Bernardinelli, G. & Wenger, O.S. Cyclometalated iridium(III) complexes as photosensitizers for long-range electron transfer: occurrence of a coulomb barrier. Eur. J. Inorg. Chem. 2009, 4850–4859 (2009).

    Google Scholar 

  11. Lowry, M.S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    CAS  Google Scholar 

  12. Tamayo, A.B. et al. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J. Am. Chem. Soc. 125, 7377–7387 (2003).

    CAS  PubMed  Google Scholar 

  13. Hopkinson, M.N., Sahoo, B., Li, J.-L. & Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry 20, 3874–3886 (2014).

    CAS  PubMed  Google Scholar 

  14. Skubi, K.L., Blum, T.R. & Yoon, T.P. Dual catalysis–strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Levin, M.D., Kim, S. & Toste, F.D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gui, Y.-Y., Sun, L., Lu, Z.-P. & Yu, D.-G. Photoredox sheds new light on nickel catalysis: from carbon–carbon to carbon–heteroatom bond formation. Org. Chem. Front. 3, 522–526 (2016).

    CAS  Google Scholar 

  17. Tellis, J.C., Primer, D.N. & Molander, G.A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Primer, D.N., Karakaya, I., Tellis, J.C. & Molander, G.A. Single-electron transmetalation: an enabling technology for secondary alkylboron cross-coupling. J. Am. Chem. Soc. 137, 2195–2198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutierrez, O., Tellis, J.C., Primer, D.N., Molander, G.A. & Kozlowski, M.C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamashita, Y., Tellis, J.C. & Molander, G.A. rotecting group-free, selective cross-coupling of alkyltrifluoroborates with borylated aryl bromides via photoredox/nickel dual catalysis. Proc. Natl. Acad. Sci. USA 112, 12026–12029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karakaya, I., Primer, D.N. & Molander, G.A. Photoredox cross-coupling: Ir/Ni dual catalysis for the synthesis of benzylic ethers. Org. Lett. 17, 3294–3297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. El Khatib, M., Serafim, R.A.M. & Molander, G.A. α-Arylation/heteroarylation of chiral α-aminomethyltrifluoroborates by synergistic iridium photoredox/nickel cross-coupling catalysis. Angew. Chem. Int. Ed. 55, 254–258 (2016).

    CAS  Google Scholar 

  23. Amani, J., Sodagar, E. & Molander, G.A. Visible light photoredox cross-coupling of acyl chlorides with potassium alkoxymethyltrifluoroborates: synthesis of α-alkoxyketones. Org. Lett. 18, 732–735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuo, Z.W. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu, L., Lipshultz, J.M. & MacMillan, D.W.C. Merging photoredox and nickel catalysis: the direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem. Int. Ed. 54, 7929–7933 (2015).

    CAS  Google Scholar 

  26. Le, C.C. & MacMillan, D.W.C. Fragment couplings via CO2 extrusion-recombination: expansion of a classic bond-forming strategy via metallaphotoredox. J. Am. Chem. Soc. 137, 11938–11941 (2015).

    CAS  PubMed  Google Scholar 

  27. Noble, A., McCarver, S.J. & MacMillan, D.W.C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).

    CAS  PubMed  Google Scholar 

  28. Terrett, J.A., Cuthbertson, J.D., Shurtleff, V.W. & MacMillan, D.W.C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaw, M.H., Shurtleff, V.W., Terrett, J.A., Cuthbertson, J.D. & MacMillan, D.W.C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalyani, D., McMurtrey, K.B., Neufeldt, S.R. & Sanford, M.S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, Y. & Sanford, M.S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 134, 9034–9037 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Neufeldt, S.R. & Sanford, M.S. Combining transition metal catalysis with radical chemistry: dramatic acceleration of palladium-catalyzed C-H arylation with diaryliodonium salts. Adv. Synth. Catal. 354, 3517–3522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jouffroy, M., Primer, D.N. & Molander, G.A. Base-free photoredox/nickel dual-catalytic cross-coupling of ammonium alkylsilicates. J. Am. Chem. Soc. 138, 475–478 (2016).

    CAS  PubMed  Google Scholar 

  34. Corcé, V. et al. Silicates as latent alkyl radical precursors: visible-light photocatalytic oxidation of hypervalent bis-catecholato silicon compounds. Angew. Chem. Int. Ed. 54, 11414–11418 (2015).

    Google Scholar 

  35. Patel, N.R., Kelly, C.B., Jouffroy, M. & Molander, G.A. Engaging alkenyl halides with alkylsilicates via photoredox dual catalysis. Org. Lett. 18, 764–767 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jouffroy, M., Davies, G.H.M. & Molander, G.A. Accessing elaborated 2,1-borazaronaphthalene cores using photoredox/nickel dual-catalytic functionalization. Org. Lett. 18, 1606–1609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lévêque, C., Chenneberg, L., Corcé, V., Goddard, J.-P. & Ollivier, C. et al. Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl cross coupling reactions. Org. Chem. Front. 3, 462–465 (2016).

    Google Scholar 

  38. Kim, S., Rojas-Martinab, J. & Toste, F.D. Visible light-mediated gold-catalysed carbon(sp2)–carbon(sp) cross-coupling. Chem. Sci. 7, 85–88 (2016).

    CAS  PubMed  Google Scholar 

  39. Shu, X.Z., Zhang, M., He, Y., Frei, H. & Toste, F.D. Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. He, Y., Wuab, H. & Toste, F.D. A dual catalytic strategy for carbon–phosphorus cross-coupling via gold and photoredox catalysis. Chem. Sci. 6, 1194–1198 (2015).

    CAS  PubMed  Google Scholar 

  41. Sahoo, B., Hopkinson, M.N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013).

    CAS  PubMed  Google Scholar 

  42. Hopkinson, M.N., Sahoo, B. & Glorius, F. Dual photoredox and gold catalysis: intermolecular multicomponent oxyarylation of alkenes. Adv. Synth. Catal. 356, 2794–2800 (2014).

    CAS  Google Scholar 

  43. Rueping, M., Koenigs, R.M., Poscharny, K., Fabry, D.C., Leonori, D. & Vila, C. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions—C-C bond formation using visible light. Chemistry 18, 5170–5174 (2012).

    CAS  PubMed  Google Scholar 

  44. Tasker, S.Z. & Jamison, T.F. Highly regioselective indoline synthesis under nickel/photoredox dual catalysis. J. Am. Chem. Soc. 137, 9531–9534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xuan, J., Zeng, T.-T., Chen, J.-T., Lu, L.-Q. & Xiao, W.J. Room temperature C-P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis. Chemistry 21, 4962–4965 (2015).

    CAS  PubMed  Google Scholar 

  46. Cheng, W.-M., Shang, R., Yu, H.-Z. & Fu, Y. Room-temperature decarboxylative couplings of α-oxocarboxylates with aryl halides by merging photoredox with palladium catalysis. Chemistry 21, 13191–13195 (2015).

    CAS  PubMed  Google Scholar 

  47. Jouffroy, M., Kelly, C.B. & Molander, G.A. Thioetherification via photoredox/nickel dual catalysis. Org. Lett. 18, 876–879 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oderinde, M.S., Frenette, M., Robbins, D.W., Aquila, B. & Johannes, J.W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).

    CAS  PubMed  Google Scholar 

  49. Lang, S.B., O'Nele, K.M. & Tunge, J.A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 136, 13606–13609 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lang, S.B., O'Nele, K.M., Douglas, J.T. & Tunge, J.A. Dual catalytic decarboxylative allylations of α-amino acids and their divergent mechanisms. Chemistry 21, 18589–18593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, A., Teegardin, K., Kelly, M., Prasad, K.S ., Krishnan, S. & Weaver, J.D. Facile synthesis and complete characterization of homoleptic and heteroleptic cyclometalated iridium(III) complexes for photocatalysis. J. Organomet. Chem. 776, 51–59 (2015).

    CAS  Google Scholar 

  52. Dai, C., Narayanam, J.M.R. & Stephenson, C.R.J. Visible-light-mediated conversion of alcohols to halides. Nat. Chem. 3, 140–145 (2011).

    CAS  PubMed  Google Scholar 

  53. Yasu, Y., Koike, T. & Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal. 354, 3414–3420 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Institute of General Medical Sciences (R01 GM111465, R01-GM-113878), the National Science Foundation (CHE-1362841), Pfizer, and Eli Lilly. C.B.K. is grateful for a National Institutes of Health National Research Service Award postdoctoral fellowship (F32GM117634-01). J.C.T. is grateful for fellowship support from Bristol-Myers Squibb. In addition, the authors thank Sigma-Aldrich for the generous material donation of iridium(III) chloride and Johnson Matthey for the donations of iridium(III) chloride and ruthenium(III) chloride trihydrate.

Author information

Authors and Affiliations

Authors

Contributions

C.B.K. coordinated the project. C.B.K., N.R.P., D.N.P., M.J., and J.C.T. performed the reactions. C.B.K. and G.A.M. wrote the manuscript. N.R.P., D.N.P., M.J., J.C.T., and G.A.M. edited the manuscript.

Corresponding author

Correspondence to Gary A Molander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, C., Patel, N., Primer, D. et al. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Nat Protoc 12, 472–492 (2017). https://doi.org/10.1038/nprot.2016.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing