Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Facile synthesis of gold nanomaterials with unusual crystal structures

Abstract

Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of 2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of 1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200–400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0–6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17–37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Photographs of the experimental setup used for the synthesis of Au nanomaterials with unusual crystal structures.
Figure 3: TEM characterization of hcp AuSSs.
Figure 4: TEM characterization of hcp/fcc Au NWs.
Figure 5: A typical TEM image of hcp/fcc Au NWs synthesized in the presence of water in the reaction solution, leading to the formation of many spherical Au nanoparticles.
Figure 6: TEM and AFM characterizations of hcp/fcc AuSPs.
Figure 7: TEM characterization of 4H Au NRBs.

Similar content being viewed by others

References

  1. Anker, J.N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  2. Lee, S.-W. et al. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 5, 897–904 (2011).

    Article  CAS  Google Scholar 

  3. Yavuz, M.S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

    Article  CAS  Google Scholar 

  4. Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  5. Huang, X. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotech. 6, 28–32 (2011).

    Article  CAS  Google Scholar 

  6. Fujita, T. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775–780 (2012).

    Article  CAS  Google Scholar 

  7. Novo, C., Funston, A.M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotech. 3, 598–602 (2008).

    Article  CAS  Google Scholar 

  8. Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotech. 7, 237–241 (2012).

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  10. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z.L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  11. Li, J.F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  12. Lu, G. et al. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2, 1817–1821 (2011).

    Article  CAS  Google Scholar 

  13. Linic, S., Christopher, P. & Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  Google Scholar 

  14. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl. 48, 60–103 (2009).

    Article  CAS  Google Scholar 

  15. Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  16. Faraday, M. The Bakerian Lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 147, 145–181 (1857).

    Article  Google Scholar 

  17. Jana, N.R., Gearheart, L. & Murphy, C.J. Seeding growth for size control of 540 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).

    Article  CAS  Google Scholar 

  18. Nikoobakht, B. & El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  19. Jana, N.R., Gearheart, L. & Murphy, C.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  20. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  21. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994).

  22. Esumi, K., Matsuhisa, K. & Torigoe, K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11, 3285–3287 (1995).

    Article  CAS  Google Scholar 

  23. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  24. Skrabalak, S.E., Au, L., Li, X. & Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2, 2182–2190 (2007).

    Article  CAS  Google Scholar 

  25. Halder, A. & Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 19, 1854–1858 (2007).

    Article  CAS  Google Scholar 

  26. Lu, X., Yavuz, M.S., Tuan, H.-Y., Korgel, B.A. & Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine—AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008).

    Article  CAS  Google Scholar 

  27. Wang, C., Hu, Y., Lieber, C.M. & Sun, S. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902–8903 (2008).

    Article  CAS  Google Scholar 

  28. Huo, Z., Tsung, C.-k., Huang, W., Zhang, X. & Yang, P. Sub-two nanometer single crystal Au nanowires. Nano Lett. 8, 2041–2044 (2008).

    Article  CAS  Google Scholar 

  29. Brown, S., Sarikaya, M. & Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000).

    Article  CAS  Google Scholar 

  30. Millstone, J.E. et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127, 5312–5313 (2005).

    Article  CAS  Google Scholar 

  31. Ah, C.S. et al. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 17, 5558–5561 (2005).

    Article  CAS  Google Scholar 

  32. Niu, J. et al. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 5, 3313 (2014).

    Article  Google Scholar 

  33. Wang, L. et al. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nat. Commun. 6, 6957 (2015).

    Article  CAS  Google Scholar 

  34. Yamamoto, M., Kashiwagi, Y., Sakata, T., Mori, H. & Nakamoto, M. Synthesis and morphology of star-shaped gold nanoplates protected by poly(n-vinyl-2-pyrrolidone). Chem. Mater. 17, 5391–5393 (2005).

    Article  CAS  Google Scholar 

  35. Huang, X. et al. Photochemically controlled synthesis of anisotropic Au nanostructures: platelet-like Au nanorods and six-star Au nanoparticles. ACS Nano 4, 6196–6202 (2010).

    Article  CAS  Google Scholar 

  36. Chen, S., Wang, Z.L., Ballato, J., Foulger, S.H. & Carroll, D.L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003).

    Article  CAS  Google Scholar 

  37. Zhang, J. et al. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. Engl. 45, 1116–1119 (2006).

    Article  CAS  Google Scholar 

  38. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. Engl. 116, 3759–3763 (2004).

    Article  Google Scholar 

  39. Ma, Y. et al. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. Engl. 47, 8901–8904 (2008).

    Article  CAS  Google Scholar 

  40. Ming, T. et al. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 131, 16350–16351 (2009).

    Article  CAS  Google Scholar 

  41. Niu, W., Zhang, W., Firdoz, S. & Lu, X. Dodecahedral gold nanocrystals: the missing platonic shape. J. Am. Chem. Soc. 136, 3010–3012 (2014).

    Article  CAS  Google Scholar 

  42. Zhang, J. et al. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 132, 14012–14014 (2010).

    Article  CAS  Google Scholar 

  43. Fan, Z. & Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 45, 63–82 (2016).

    Article  CAS  Google Scholar 

  44. Zhang, S., Guo, S., Zhu, H., Su, D. & Sun, S. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J. Am. Chem. Soc. 134, 5060–5063 (2012).

    Article  CAS  Google Scholar 

  45. Li, Q. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 15, 2468–2473 (2015).

    Article  CAS  Google Scholar 

  46. Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    Article  CAS  Google Scholar 

  47. Sun, S., Murray, C.B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  48. Kim, J., Lee, Y. & Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010).

    Article  CAS  Google Scholar 

  49. Ye, H. et al. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 16, 2812–2817 (2016).

    Article  CAS  Google Scholar 

  50. Chakraborty, I., Shirodkar, N.S., Gohil, S., Waghmare, V.U. & Ayyub, P. A stable, quasi-2D modification of silver: optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter 26, 025402 (2014).

    Article  Google Scholar 

  51. Koski, K.J. et al. Structural distortions in 5-10 nm silver nanoparticles under high pressure. Phys. Rev. B 78, 165410 (2008).

    Article  Google Scholar 

  52. Sun, Y., Yang, W., Ren, Y., Wang, L. & Lei, C. Multiple-step phase transformation in silver nanoplates under high pressure. Small 7, 606–611 (2011).

    Article  CAS  Google Scholar 

  53. Taneja, P., Banerjee, R., Ayyub, P. & Dey, G.K. Observation of a hexagonal (4H) phase in nanocrystalline silver. Phys. Rev. B 64, 033405 (2001).

    Article  Google Scholar 

  54. Liu, X., Luo, J. & Zhu, J. Size effect on the crystal structure of silver nanowires. Nano Lett. 6, 408–412 (2006).

    Article  CAS  Google Scholar 

  55. Sun, Y. et al. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 3, 971 (2012).

    Article  Google Scholar 

  56. Kusada, K. et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135, 5493–5496 (2013).

    Article  CAS  Google Scholar 

  57. Duan, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014).

    Article  Google Scholar 

  58. Huang, X. et al. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 24, 979–983 (2012).

    Article  CAS  Google Scholar 

  59. Huang, X. et al. Synthesis of gold square-like plates from ultrathin gold square sheets: the evolution of structure phase and shape. Angew. Chem. Int. Ed. Engl. 50, 12245–12248 (2011).

    Article  CAS  Google Scholar 

  60. Fan, Z. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015).

    Article  CAS  Google Scholar 

  61. Huang, X. et al. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011).

    Article  Google Scholar 

  62. Fan, Z. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 6, 6571 (2015).

    Article  CAS  Google Scholar 

  63. Fan, Z. et al. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 8, 795–799 (2017).

    Article  CAS  Google Scholar 

  64. Fan, Z. et al. Synthesis of 4H/fcc Noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419 (2016).

    Article  CAS  Google Scholar 

  65. Beeram, S.R. & Zamborini, F.P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano 4, 3633–3646 (2010).

    Article  CAS  Google Scholar 

  66. Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301–309 (1989).

    Article  CAS  Google Scholar 

  67. Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. Int. Ed. Engl. 49, 9657–9661 (2010).

    Article  CAS  Google Scholar 

  68. Xiong, Z., Zhang, L.L., Ma, J. & Zhao, X.S. Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem. Commun. 46, 6099–6101 (2010).

    Article  CAS  Google Scholar 

  69. Viarbitskaya, S. et al. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat. Mater. 12, 426–432 (2013).

    Article  CAS  Google Scholar 

  70. Hrelescu, C. et al. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett. 11, 402–407 (2011).

    Article  CAS  Google Scholar 

  71. Longmire, M., Choyke, P.L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nano Med. 3, 703–717 (2008).

    CAS  Google Scholar 

  72. Huang, X., Qi, X., Boey, F. & Zhang, H. Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012).

    Article  CAS  Google Scholar 

  73. Zhou, X. et al. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education (MOE) under Academic Research Fund (AcRF) Tier 2 (ARC 19/15, MOE2014-T2-2-093; MOE2015-T2-2-057; MOE2016-T2-2-103) and AcRF Tier 1 (2016-T1-001-147; 2016-T1-002-051), and by Nanyang Technological University (NTU) under a Start-Up Grant (M4081296.070.500000) in Singapore. It was also supported by the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201), the National Natural Science Foundation of China (51322202). We acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of its electron microscopy facilities.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. proposed the research direction and guided the project. Z.F., X.H. and H.Z. developed the protocol. Z.F. and X.H. performed the experiments. Z.F., X.H., Y.C., W.H. and H.Z. drafted the manuscript. Y.C. performed some supporting experiments. All authors contributed to the manuscript.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Huang, X., Chen, Y. et al. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat Protoc 12, 2367–2376 (2017). https://doi.org/10.1038/nprot.2017.097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing