Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy

Abstract

During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome–nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme for structural studies of RNCs by NMR spectroscopy.
Figure 2: Biochemical assessment of purified RNCs.
Figure 3: NMR analysis of RNC integrity.
Figure 4: Heteronuclear spectra of RNCs and monitoring of RNC integrity.

Similar content being viewed by others

References

  1. Cabrita, L.D. et al. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Nat. Struct. Mol. Biol. 23, 278–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cabrita, L.D., Dobson, C.M. & Christodoulou, J. Protein folding on the ribosome. Curr. Opin. Struct. Biol. 20, 33–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Nicola, A.V., Chen, W. & Helenius, A. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat. Cell Biol. 1, 341–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann, A. et al. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48, 63–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Ito, K. & Chiba, S. Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82, 171–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Kelkar, D.A., Khushoo, A., Yang, Z. & Skach, W.R. Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate. J. Biol. Chem. 287, 2568–2578 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, S.J. et al. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 348, 444–448 (2015).

    CAS  PubMed  Google Scholar 

  8. Seidelt, B. et al. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326, 1412–1415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhushan, S. et al. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol. 9, e1000581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cabrita, L.D., Hsu, S.-T.D., Launay, H., Dobson, C.M. & Christodoulou, J. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 106, 22239–22244 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evans, M.S., Ugrinov, K.G., Frese, M.-A. & Clark, P.L. Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Nat. Methods 2, 757–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ugrinov, K.G. & Clark, P.L. Cotranslational folding increases GFP folding yield. Biophys. J. 98, 1312–1320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kudlicki, W., Chirgwin, J., Kramer, G. & Hardesty, B. Folding of an enzyme into an active conformation while bound as peptidyl-tRNA to the ribosome. Biochemistry 34, 14284–14287 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Evans, M.S., Sander, I.M. & Clark, P.L. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J. Mol. Biol. 383, 683–692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsalkova, T., Odom, O.W., Kramer, G. & Hardesty, B. Different conformations of nascent peptides on ribosomes. J. Mol. Biol. 278, 713–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kleizen, B., van Vlijmen, T., de Jonge, H.R. & Braakman, I. Folding of CFTR is predominantly cotranslational. Mol. Cell 20, 277–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Frydman, J., Erdjument-Bromage, H., Tempst, P. & Hartl, F.U. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 6, 697–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Friguet, B., Djavadi-Ohaniance, L., King, J. & Goldberg, M.E. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. J. Biol. Chem. 269, 15945–15949 (1994).

    CAS  PubMed  Google Scholar 

  20. Speed, M.A., Morshead, T., Wang, D.I. & King, J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci. 6, 99–108 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Holtkamp, W. et al. Cotranslational protein folding on the ribosome monitored in real time. Science 350, 1104–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, J. & Deutsch, C. Secondary structure formation of a transmembrane segment in Kv channels. Biochemistry 44, 8230–8243 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser, C.M., Goldman, D.H., Chodera, J.D., Tinoco, I. & Bustamante, C. The ribosome modulates nascent protein folding. Science 334, 1723–1727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knight, A.M. et al. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem. Biol. 8, 1195–1204 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sander, I.M., Chaney, J.L. & Clark, P.L. Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. J. Am. Chem. Soc. 136, 858–861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fedyunin, I. et al. tRNA concentration fine tunes protein solubility. FEBS Lett. 586, 3336–3340 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Corazza, A. et al. Native-unlike long-lived intermediates along the folding pathway of the amyloidogenic protein beta2-microglobulin revealed by real-time two-dimensional NMR. J. Biol. Chem. 285, 5827–5835 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kaiser, C.M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Nilsson, O.B., Müller-Lucks, A., Kramer, G., Bukau, B. & von Heijne, G. Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein. J. Mol. Biol. 428, 1356–1364 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Gabashvili, I.S. et al. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100, 537–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, Y.-G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bhushan, S. et al. α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 17, 313–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hsu, S.-T.D. et al. Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 104, 16516–16521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu, S.T., Cabrita, L.D., Fucini, P., Christodoulou, J. & Dobson, C.M. Probing side-chain dynamics of a ribosome-bound nascent chain using methyl NMR spectroscopy. J. Am. Chem. Soc. 131, 8366–8367 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Eichmann, C., Preissler, S., Riek, R. & Deuerling, E. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. Proc. Natl. Acad. Sci USA 107, 9111–9116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsu, S.T.D. Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc. Natl. Acad. Sci. USA 104, 16516–16521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nilsson, O.B. et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12, 1533–1540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Christodoulou, J. et al. Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 101, 10949–10954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mulder, F.A. et al. Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. Biochemistry 43, 5930–5936 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Rutkowska, A. et al. Large-scale purification of ribosome-nascent chain complexes for biochemical and structural studies. FEBS Lett. 583, 2407–2413 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Hsu, S.T., Cabrita, L.D., Fucini, P., Dobson, C.M. & Christodoulou, J. Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum. J. Mol. Biol. 388, 865–879 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Deckert, A.W. et al. Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proc. Natl. Acad. Sci. USA 113, 5012–5017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Spedding, G. Isolation and analysis of ribosomes from prokaryotes, eukaryotes, and organelles. Ribosomes and Protein Synthesis. 1–29 (IRL Press, 1990).

  51. Bergemann, K. & Nierhaus, K.H. Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomes. J. Biol. Chem. 258, 15105–15113 (1983).

    CAS  PubMed  Google Scholar 

  52. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deusser, E. & Wittmann, H.G. Ribosomal proteins: variation of the protein composition in Escherichia coli ribosomes as function of growth rate. Nature 238, 269–270 (1972).

    Article  CAS  PubMed  Google Scholar 

  55. Rostom, A.A. et al. Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc. Natl. Acad. Sci. USA 97, 5185–5190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramagopal, S. & Subramanian, A.R. Alteration in the acetylation level of ribosomal protein L12 during growth cycle of Escherichia coli. Proc. Natl. Acad. Sci. USA 71, 2136–2140 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Chan, S.H.S., Waudby, C.A., Cassaignau, A.M.E., Cabrita, L.D. & Christodoulou, J. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome-nascent chain complexes. J. Biomol. NMR 63, 1–13 (2015).

    Article  CAS  Google Scholar 

  59. Kay, L.E. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J. Magn. Reson. 210, 159–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Wiesner, S. & Sprangers, R. Methyl groups as NMR probes for biomolecular interactions. Curr. Opin. Struct. Biol. 35, 60–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Tugarinov, V., Kanelis, V. & Kay, L.E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Sivashanmugam, A. et al. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. 18, 936–948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hill, W.E., Rossetti, G.P. & Van Holde, K.E. Physical studies of ribosomes from Escherichia coli. J. Mol. Biol. 44, 263–277 (1969).

    Article  CAS  PubMed  Google Scholar 

  66. Mahmood, T. & Yang, P.-C. Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 4, 429–434 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stejskal, E.O. & Tanner, J.E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288 (1965).

    Article  CAS  Google Scholar 

  68. Wu, D.H., Chen, A.D. & Johnson, C.S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. A 115, 260–264 (1995).

    Article  CAS  Google Scholar 

  69. Augustyniak, R., Ferrage, F., Damblon, C., Bodenhausen, G. & Pelupessy, P. Efficient determination of diffusion coefficients by monitoring transport during recovery delays in NMR. Chem. Commun. 48, 5307–5309 (2012).

    Article  CAS  Google Scholar 

  70. Waudby, C.A., Launay, H., Cabrita, L.D. & Christodoulou, J. Protein folding on the ribosome studied using NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 74, 57–75 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waudby, C.A. & Christodoulou, J. An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR. J. Magn. Reson. 219, 46–52 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bernd Bukau (Ruprecht-Karls-Universität Heidelberg) for anti-SecM antibodies. We acknowledge the use of the ISMB Biological NMR Facility, UCL. We thank T. Frenkiel, G. Kelly and A. Oregioni and acknowledge the use of the biomolecular NMR facilities of the MRC NMR Centre at the Francis Crick Institute. This work was supported by a New Investigator Award (BBSRC BBG0156511, to J.C.), a Wellcome Trust Investigator Award (097806/Z/11/Z, to J.C.) and an AlphaOne Foundation grant (to L.D.C.); A.L.R. is an NHMRC CJ Martin Fellow.

Author information

Authors and Affiliations

Authors

Contributions

A.M.E.C., H.M.M.L., C.A.W., J.C. and L.D.C. designed the study. A.M.E.C., H.M.M.L., M.-E.K., X.W., C.A.W., A.D., A.L.R. and L.D.C. performed the research. A.M.E.C., C.A.W., H.M.M.L., J.C. and L.D.C. wrote the paper. All authors discussed the results and contributed to the final version of the paper.

Corresponding authors

Correspondence to John Christodoulou or Lisa D Cabrita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 2D correlation spectra of FLN5 in the presence of 70S ribosomes

a SOFAST 2D correlation spectrum overlay of 5 μM 15N-labelled FLN5 in the absence (red) and presence (cyan) of 5 μM 70S ribosomes. b The relative intensities of an equimolar sample of FLN5 and 70S ribosomes (5 µM) vs. FLN5 alone (5 µM), plotted against primary sequence, shows that the intensities of FLN5 resonances remain unchanged in the presence of ribosomes, making it a tractable system for RNC studies. The analogous study can be undertaken with the unfolded polypeptide. All uncertainties have been derived from the spectral noise. Adapted from ref. 1 with permission from Nature Publishing Group.

Supplementary Figure 2 Assessment of ribosome background labelling

To assess the level of ribosomal background labelling within RNC samples, 15N/13C filtered 1H 1D (red) and 15N/13C edited 1H 1D (grey) spectra are collected. The intensity of the 1H envelope of bL12 resonances bound to 14N (15N/13C filtered 1H 1D) is matched by scaling to that of 15N-bound protons (15N/13C edited 1H 1D) in order to quantify the ratio of unlabelled to labelled species. a Intensity profiles of amide resonances in 15N filtered 1H 1D (red) and 15N 1H edited 1D (grey) spectra from a 15N-labelled RNC, in which the background labelling amounts to ~6%. b Intensity profiles of methyl resonances in 13C filtered 1H 1D (red) and 13C edited 1H 1D (grey) spectra from a 13C-labelled RNC. We determine that ~13% of its bL12 resonances are labelled.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassaignau, A., Launay, H., Karyadi, ME. et al. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nat Protoc 11, 1492–1507 (2016). https://doi.org/10.1038/nprot.2016.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.101

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing