Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes

A Publisher Correction to this article was published on 24 January 2024

This article has been updated

Abstract

We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro–transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts. The whole procedure can be completed in 2.5 d (plus 2 weeks for RRL preparation and cell expansion time). This protocol can be applied to study intrinsic functional properties (cis-acting element-mediated translation initiation or translational fidelity) of ribosome populations from different sources (including nonhuman origin). It is therefore useful for the characterization of ribosomal function in ribosomopathies and cancer, and it will be applicable in the emerging fields of ribosome diversity and specialized ribosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the reconstituted cell-free translation system protocol.
Figure 2: Scheme of the experimental setup for evaluation of translation fidelity.
Figure 3: Assessment of the level of purity of the ribosomal preparations.

Similar content being viewed by others

Change history

References

  1. Hershey, J.W.B., Sonenberg, N. & Mathews, M.B. Principles of translational control: an overview. Cold Spring Harb. Perspect. Biol. 4, a011528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Narla, A. & Ebert, B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196–3205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Penzo, M. et al. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB J. 29, 3472–3482 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Clemens, M. in Transcription and Translation: A Practical Approach (eds. Hames, B. & Higgins, S.) 231–270 (IRL Press, 1984).

  6. Allen, E.H. & Schweet, R.S. Synthesis of hemoglobin in a cell-free system. I. Properties of the complete system. J. Biol. Chem. 237, 760–777 (1962).

    Article  CAS  PubMed  Google Scholar 

  7. Sierra, J.M., Meier, D. & Ochoa, S. Effect of development on the translation of messenger RNA in Artemia salina embryos. Proc. Natl. Acad. Sci. USA 71, 2693–2697 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrisey, J. & Hardesty, B. Met-tRNA hydrolase from reticulocytes specific for Met-tRNA f Met on 40S ribosomal subunits. Arch. Biochem. Biophys. 152, 385–397 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Brigotti, M. et al. Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochem. J. 369, 369–374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sperti, S., Brigotti, M., Zamboni, M., Carnicelli, D. & Montanaro, L. Requirements for the inactivation of ribosomes by gelonin. Biochem. J. 277 (Part 1): 281–284 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kozak, M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 9, 5073–5080 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozak, M. Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michel, Y.M., Poncet, D., Piron, M., Kean, K.M. & Borman, A.M. Cap-Poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J. Biol. Chem. 275, 32268–32276 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Soto Rifo, R., Ricci, E.P., Décimo, D., Moncorgé, O. & Ohlmann, T. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Res. 35, e121 (2007).

    Article  PubMed  Google Scholar 

  15. Panthu, B., Decimo, D., Balvay, L. & Ohlmann, T. In vitro translation in a hybrid cell free lysate with exogenous cellular ribosomes. Biochem. J. 398, 387–398 (2015).

    Article  Google Scholar 

  16. Brigotti, M. et al. Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochem. J. 369, 369–374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bellodi, C. et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res. 70, 6026–6035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Montanaro, L. et al. Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res. 70, 4767–4777 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Rocchi, L. et al. Dyskerin depletion increases VEGF mRNA internal ribosome entry site-mediated translation. Nucleic Acids Res. 41, 8308–8318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, R.J. & Hunt, T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 96, 50–74 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Sherf, B.A. & Al, E. Dual-Luciferase® reporter assay: An advanced co-reporter technology integrating firefly and Renilla luciferase assays. Promega Notes Mag. 57, 2–9 (1996).

    Google Scholar 

  24. Levy, S., Avni, D., Hariharan, N., Perry, R.P. & Meyuhas, O. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88, 3319–3323 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsieh, A.C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Truitt, M.L. et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 162, 59–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue, S. et al. RNA regulons in Hox 5 UTRs confer ribosome specificity to gene regulation. Nature 517, 33–38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hentze, M.W. & Kühn, L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 8175–8182 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue, S. & Barna, M. Cis-regulatory RNA elements that regulate specialized ribosome activity. RNA Biol. 12, 1083–1087 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ivanov, I.P., Anderson, C.B., Gesteland, R.F. & Atkins, J.F. Identification of a new antizyme mRNA +1 frameshifting stimulatory pseudoknot in a subset of diverse invertebrates and its apparent absence in intermediate species. J. Mol. Biol. 339, 495–504 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dinman, J.D. & Berry, M.J. 22 Regulation of termination and recoding. Cold Spring Harb. Monogr. Arch. 48, 625–654 (2007).

    CAS  Google Scholar 

  32. Dinman, J.D. Pathways to specialized ribosomes: the Brussels lecture. J. Mol. Biol. 428, 2186–2194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reschke, M. et al. Characterization and analysis of the composition and dynamics of the mammalian riboproteome. Cell Rep. 4, 1276–1287 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Meskauskas, A. & Dinman, J.D. A molecular clamp ensures allosteric coordination of peptidyltransfer and ligand binding to the ribosomal A-site. Nucleic Acids Res. 38, 7800–7813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Landry, D.M., Hertz, M.I. & Thompson, S.R. RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev. 23, 2753–2764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Rocchi, L., Alfieri, R.R., Petronini, P.G., Montanaro, L. & Brigotti, M. 5′-Untranslated region of heat shock protein 70 mRNA drives translation under hypertonic conditions. Biochem. Biophys. Res. Commun. 431, 321–325 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Vizcaíno, J.A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pelham, H.R. & Jackson, R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Separation of RNA According to Size. Electrophoresis of RNA through agarose gels containing formaldehyde. In Molecular Cloning - A Laboratory Manual 3rd edn. Vol. 1 (eds. Sambrook, J. & Russel, D.W.) 7.31–7.34 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001).

Download references

Acknowledgements

This work was funded by the Association for International Cancer Research (AICR) (grant 09-0083 to L.M.), the Associazione Italiana per la Ricerca sul Cancro (AIRC) (grant IG-11416 to L.M.) and the Pallotti Legacy for Cancer Research (grants to M.B. and L.M.). M.B. and D.C. thank Lucio Montanaro and S. Sperti, who initiated them into ribosome biochemistry. The authors thank C. Betts for language revision of the manuscript and P. G. Petronini and R. Alfieri for ion determinations.

Author information

Authors and Affiliations

Authors

Contributions

M.P., L.M. and M.B. developed the protocol, and wrote and edited the manuscript. D.C. helped to optimize the protocol.

Corresponding authors

Correspondence to Lorenzo Montanaro or Maurizio Brigotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Ribosomal pellets obtained after centrifugation at different points of the procedure.

Photographs showing the size, shape and color of ribosomal pellets from different sources. (a) Ribosomes pelleted from rabbit reticulocyte lysate (reagent setup, ribosomal salt wash preparation) form a large, red pellet (arrow). (b) Human ribosomes pelleted through a discontinuous sucrose gradient starting from a cellular lysate (step 16) form a small and translucent pellet (arrow).

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Table 1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penzo, M., Carnicelli, D., Montanaro, L. et al. A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes. Nat Protoc 11, 1309–1325 (2016). https://doi.org/10.1038/nprot.2016.072

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing