Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Automated screening for small organic ligands using DNA-encoded chemical libraries

This article has been updated

Abstract

DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of different DECL types.
Figure 2: Overview of the screening process.
Figure 3: Plate loading scheme.
Figure 4: Layout of the two-step PCR.
Figure 5: Data processing workflow.
Figure 6: Selection fingerprints.

Similar content being viewed by others

Change history

  • 01 April 2016

     In the version of this article initially published online, two of the reference citations were to the wrong references. In addition, incorrect units were given for the final concentration of PBST-biotin. The errors have been corrected for all versions of this article.

References

  1. Mayr, L.M. & Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9, 580–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Wigglesworth, M.J., Murray, D.C., Blackett, C.J., Kossenjans, M. & Nissink, J.W. Increasing the delivery of next generation therapeutics from high-throughput screening libraries. Curr. Opin. Chem. Biol. 26, 104–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small-molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Rees, D.C., Congreve, M., Murray, C.W. & Carr, R. Fragment-based lead discovery. Nat. Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Jorgensen, W.L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Reker, D. et al. Revealing the macromolecular targets of complex natural products. Nat. Chem. 6, 1072–1078 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug discovery. Drug Discov. Today 20, 458–465 (2015).

    Article  PubMed  Google Scholar 

  10. Mannocci, L., Leimbacher, M., Wichert, M., Scheuermann, J. & Neri, D. 20 years of DNA-encoded chemical libraries. Chem. Commun. 47, 12747–12753 (2011).

    Article  CAS  Google Scholar 

  11. Kleiner, R.E., Dumelin, C.E. & Liu, D.R. Small-molecule discovery from DNA-encoded chemical libraries. Chem. Soc. Rev. 40, 5707–5717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franzini, R.M., Neri, D. & Scheuermann, J. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc. Chem. Res. 47, 1247–1255 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Brenner, S. & Lerner, R.A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Needels, M.C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl. Acad. Sci. USA 90, 10700–10704 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buller, F. et al. Discovery of TNF inhibitors from a DNA-encoded chemical library based on Diels-Alder cycloaddition. Chem. Biol. 16, 1075–1086 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Leimbacher, M. et al. Discovery of small-molecule interleukin-2 inhibitors from a DNA-encoded chemical library. Chemistry 18, 7729–7737 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Buller, F. et al. Selection of carbonic anhydrase IX inhibitors from one million DNA-encoded compounds. ACS Chem. Biol. 6, 336–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Clark, M.A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Franzini, R.M., Nauer, A., Scheuermann, J. & Neri, D. Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins. Chem. Commun. 51, 8014–8016 (2015).

    Article  CAS  Google Scholar 

  20. Franzini, R.M. et al. Identification of structure-activity relationships from screening a structurally compact DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 54, 3927–3931 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Samain, F. et al. Tankyrase 1 inhibitors with drug-like properties identified by screening a DNA-encoded chemical library. J. Med. Chem. 58, 5143–5149 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Buller, F. et al. Design and synthesis of a novel DNA-encoded chemical library using Diels-Alder cycloadditions. Bioorg. Med. Chem. Lett. 18, 5926–5931 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Gartner, Z.J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kleiner, R.E., Dumelin, C.E., Tiu, G.C., Sakurai, K. & Liu, D.R. In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J. Am. Chem. Soc. 132, 11779–11791 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Georghiou, G., Kleiner, R.E., Pulkoski-Gross, M., Liu, D.R. & Seeliger, M.A. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Nat. Chem. Biol. 8, 366–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maianti, J.P. et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 511, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tse, B.N., Snyder, T.M., Shen, Y. & Liu, D.R. Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection. J. Am. Chem. Soc. 130, 15611–15626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y., Zhao, P., Zhang, M., Zhao, X. & Li, X. Multistep DNA-templated synthesis using a universal template. J. Am. Chem. Soc. 135, 17727–17730 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Blakskjaer, P., Heitner, T. & Hansen, N.J. Fidelity by design: Yoctoreactor and binder trap enrichment for small-molecule DNA-encoded libraries and drug discovery. Curr. Opin. Chem. Biol. 26, 62–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Weisinger, R.M., Wrenn, S.J. & Harbury, P.B. Highly parallel translation of DNA sequences into small molecules. PLoS ONE 7, e28056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melkko, S., Scheuermann, J., Dumelin, C.E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Zambaldo, C., Barluenga, S. & Winssinger, N. PNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 8–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Eberhard, H., Diezmann, F. & Seitz, O. DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew. Chem. Int. Ed. Engl. 50, 4146–4150 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Winssinger, N. et al. PNA-encoded protease substrate microarrays. Chem. Biol. 11, 1351–1360 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ciobanu, M. et al. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem. Commun. 47, 9321–9323 (2011).

    Article  CAS  Google Scholar 

  37. Gorska, K., Huang, K.T., Chaloin, O. & Winssinger, N. DNA-templated homo- and heterodimerization of peptide nucleic acid encoded oligosaccharides that mimick the carbohydrate epitope of HIV. Angew. Chem. Int. Ed. Engl. 48, 7695–7700 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Daguer, J.P. et al. DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem. Sci. 6, 739–744 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Novoa, A., Machida, T., Barluenga, S., Imberty, A. & Winssinger, N. PNA-encoded synthesis (PES) of a 10,000-member hetero-glycoconjugate library and microarray analysis of diverse lectins. ChemBioChem 15, 2058–2065 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Litovchick, A. et al. Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci. Rep. 5, 10916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Franzini, R.M. et al. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries. Bioconjug. Chem. 25, 1453–1461 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Satz, A.L. et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. Bioconjug. Chem. 26, 1623–1632 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Kang, A.S., Barbas, C.F., Janda, K.D., Benkovic, S.J. & Lerner, R.A. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88, 4363–4366 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang, P. & Pardee, A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Josephson, K., Ricardo, A. & Szostak, J.W. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov. Today 19, 388–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Griffiths, A.D. et al. Isolation of high-affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Franzini, R.M. et al. 'Cap-and-Catch' purification for enhancing the quality of libraries of DNA conjugates. ACS Comb. Sci. 17, 393–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bentley, D.R. et al. Accurate whole-human-genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl. Acad. Sci. USA 105, 17670–17675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buller, F. et al. High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries. Bioorg. Med. Chem. Lett. 20, 4188–4192 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Chan, A.I., McGregor, L.M. & Liu, D.R. Novel selection methods for DNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 55–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McGregor, L.M., Gorin, D.J., Dumelin, C.E. & Liu, D.R. Interaction-dependent PCR: identification of ligand-target pairs from libraries of ligands and libraries of targets in a single solution-phase experiment. J. Am. Chem. Soc. 132, 15522–15524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McGregor, L.M., Jain, T. & Liu, D.R. Identification of ligand-target pairs from combined libraries of small molecules and unpurified protein targets in cell lysates. J. Am. Chem. Soc. 136, 3264–3270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, G. et al. Photoaffinity labeling of small-molecule-binding proteins by DNA-templated chemistry. Angew. Chem. Int. Ed. Engl. 52, 9544–9549 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, P. et al. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets. Angew. Chem. Int. Ed. Engl. 53, 10056–10059 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Melkko, S. et al. Isolation of a small-molecule inhibitor of the antiapoptotic protein Bcl-xL from a DNA-encoded chemical library. ChemMedChem 5, 584–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Scheuermann, J. et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjug. Chem. 19, 778–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Dumelin, C.E., Scheuermann, J., Melkko, S. & Neri, D. Selection of streptavidin binders from a DNA-encoded chemical library. Bioconjug. Chem. 17, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Melkko, S., Dumelin, C.E., Scheuermann, J. & Neri, D. On the magnitude of the chelate effect for the recognition of proteins by pharmacophores scaffolded by self-assembling oligonucleotides. Chem. Biol. 13, 225–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Melkko, S., Zhang, Y., Dumelin, C.E., Scheuermann, J. & Neri, D. Isolation of high-affinity trypsin inhibitors from a DNA-encoded chemical library. Angew. Chem. Int. Ed. Engl. 46, 4671–4674 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Mannocci, L. et al. Isolation of potent and specific trypsin inhibitors from a DNA-encoded chemical library. Bioconjug. Chem. 21, 1836–1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Kohn, M. Immobilization strategies for small molecule, peptide and protein microarrays. J. Pept. Sci. 15, 393–397 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Waugh, D.S. Making the most of affinity tags. Trends Biotechnol. 23, 316–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, D.B. Generating fusions to glutathione S-transferase for protein studies. Methods Enzymol. 326, 254–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Bornhorst, J.A. & Falke, J.J. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 326, 245–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Satz, A.L. DNA encoded library selections and insights provided by computational simulations. ACS Chem. Biol. 10, 2237–2245 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Lin, W., Reddavide, F.V., Uzunova, V., Gur, F.N. & Zhang, Y. Characterization of DNA-conjugated compounds using a regenerable chip. Anal. Chem. 87, 864–868 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Wrenn, S.J., Weisinger, R.M., Halpin, D.R. & Harbury, P.B. Synthetic ligands discovered by in vitro selection. J. Am. Chem. Soc. 129, 13137–13143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seigal, B.A. et al. The discovery of macrocyclic XIAP antagonists from a DNA-programmed chemistry library, and their optimization to give lead compounds with in vivo antitumor activity. J. Med. Chem. 58, 2855–2861 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ahlskog, J.K. et al. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br. J. Cancer 101, 645–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Zürich, the Swiss National Science Foundation (SNSF), the Commission for Technology and Innovation (CTI) of the Swiss Confederation, Krebsliga Schweiz/Krebsforschung Schweiz, the European Union's Research and Innovation funding program and Philochem AG. R.M.F. acknowledges a Vizepräsident für Forschung und Wirtschaftsbeziehungen (VPFW)-ETH postdoctoral fellowship endowed by ETH Zürich and Marie-Curie actions. The authors thank S. Melkko, C.E. Dumelin, L. Mannocci, M. Jaggi, M. Leimbacher, M. Steiner, H. Röst, A. Nauer, D. Bajic, M. Valk, S. Biendl and F. Samain for their help with establishing and improving the protocol. The authors thank C. Aquino, L. Poveda and L. Opitz (Functional Genomics Center Zürich) for help with high-throughput DNA sequencing. TruSeq adapter oligonucleotide sequences © 2015 Illumina. All rights reserved. Derivative works created by Illumina customers are authorized for use with Illumina instruments and products only. All other uses are strictly prohibited.

Author information

Authors and Affiliations

Authors

Contributions

W.D. established the selection protocol using magnetic beads and the KingFisher magnetic particle processor. W.D., M.W. and R.M.F. applied the protocol and optimized affinity-based selections. W.D. and J.S. optimized the PCR encoding system. F.B. adapted the protocol to use with Illumina sequencing and developed the MATLAB scripts. M.A.S. and Y.Z. wrote and optimized the evaluation software. W.D., D.N. and J.S. wrote the manuscript.

Corresponding authors

Correspondence to Dario Neri or Jörg Scheuermann.

Ethics declarations

Competing interests

D.N. is a cofounder and shareholder of Philochem AG and J.S. is a board member of Philochem AG.

Supplementary information

Supplementary Text and Figures

Supplementary Methods 1 and 2, Supplementary Data 1 and Supplementary Note (PDF 951 kb)

Supplementary Software 1

DECL_selection_5w_KF.msz KingFisher program file. It may be adapted upon import into the BindIt software. The BindIt software runs the program on the KingFisher magnetic particle processor. (ZIP 4 kb)

Supplementary Software 2

count.cpp Code of the C++ program “count”. “Count” processes HTDS data using information provided in the structure file and the code lists. (ZIP 8 kb)

Supplementary Software 3

structure.txt Example of a structure file. The structure file provides the C++ program with information about the HTDS data, the code lists as well as the constant regions of the DECL (see Box 2 for further information). (ZIP 0 kb)

Supplementary Software 4

codelist1.txt Example of a code list. The code list contains all the different sequences used in one of the four coding positions. (ZIP 0 kb)

Supplementary Software 5

MATLABscript_2BB.docx MATLAB script 2BB. Selection number and cut-off may be chosen in the highlighted positions. This script provides a 3 dimensional plot for the display of a 2-building block library. Z-axis represents sequence counts. (ZIP 45 kb)

Supplementary Software 6

MATLABscript_3BB.docx MATLAB script 3BB. Selection number and cut-off may be chosen in the highlighted positions. This script provides a 3 dimensional plot for the display of a 3-building block library. Dot colour and size represent sequence counts. (ZIP 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decurtins, W., Wichert, M., Franzini, R. et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat Protoc 11, 764–780 (2016). https://doi.org/10.1038/nprot.2016.039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.039

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research