Supplementary Figure 1

Equipment for *in utero* electroporation.

(This figure is also available in *Protocol Exchange* doi:10.1038/protex.2013.089 (2013) and is reproduced with permission here to aid use of the protocol)
Supplementary Figure 2

Electrode configuration for tripolar *in utero* electroporation.

(a) The configuration for tripolar *in utero* electroporation entails two conventional forceps-type electrodes connected to a single polarity by a Y-connector and an additional custom-made third electrode. Scale bar: 5cm. (b) High magnification of the Y-connector for connection of commercial forceps-like electrodes to a same pole. Scale bar: 1cm. (This figure is also available in *Protocol Exchange* doi:10.1038/protex.2013.089 (2013) and is reproduced with permission here to aid use of the protocol)
Supplementary Figure 3

Tools for *in utero* electroporation.

(a) ring forceps (1), shark-tooth tissue forceps (2), scissors with flat shanks – angular (3), scissors with flat shanks – straight (4), Olsen-Hegar needle holders with scissors (5), scalpel (6), scalpel blade (7). (b) surgical tools, plastic connectors, surgical drape and gauze in a self-sealing autoclavable pouch. Scale bars: 2 cm. (This figure is also available in *Protocol Exchange* doi:10.1038/protex.2013.089 (2013) and is reproduced with permission here to aid use of the protocol)
Supplementary Figure 4

The fluorescence of the reporter gene can be enhanced by immunostaining with a specific antibody.

(a) Confocal image of EGFP fluorescence in a coronal section of a mouse neocortex at P7 after *in utero* transfection (at E15.5) in an experiment that resulted in low transfection efficiency. (b) Confocal image of the same slice after immunostaining with anti-GFP antibody (Abcam, cat. no. Ab13970; concentration 1:1000). Images in (a) and (b) were acquired using a confocal microscope with the same parameters. Scale bar: 100 µm.