Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water

Abstract

In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgClxBr1−x) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the IR-ATR sensor setup.
Figure 2: Workflow of fiber fabrication.
Figure 3: IR absorption spectra.
Figure 4: Calibration function with high sensitivity and wide linear range (100–1,000 p.p.b.) for the detection of two groups of multiple VOCs in 5 min.

Similar content being viewed by others

References

  1. Park, J.H. et al. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341, 643–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Roy, G. & Mielczarski, J.A. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations. Water Res. 36, 1902–1908 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, W. & Li, Z. Detection and quantification of trace organic contaminants in water using the FT-IR-attenuated total reflectance technique. Anal. Chem. 82, 505–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Louarn, E. et al. Characterization of a membrane inlet interfaced with a compact chemical ionization FT-ICR for real-time and quantitative VOC analysis in water. Int. J. Mass Spectrom. 353, 26–35 (2013).

    Article  CAS  Google Scholar 

  5. Lu, R. et al. IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water. Angew. Chem. Int. Ed. 52, 2265–2268 (2013).

    Article  CAS  Google Scholar 

  6. Lu, R. et al. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology. Sci. Rep. 3, 2525–2531 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lu, R. et al. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 140, 765–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Karlowatz, M., Kraft, M. & Mizaikoff, B. Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Anal. Chem. 76, 2643–2648 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Pejcic, B., Myers, M. & Ross, A. Mid-infrared sensing of organic pollutants in aqueous environments. Sensors 9, 6232–6253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luzinova, Y. et al. Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors. Analyst 137, 333–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Luzinova, Y. et al. In situ trace analysis of oil in water with mid-infrared fiberoptic chemical sensors. Anal. Chem. 84, 1274–1280 (2011).

    Article  CAS  Google Scholar 

  12. Charlton, C. et al. Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides. Anal. Chem. 77, 4398–4403 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Schädle, T. et al. Mid-infrared planar silver halide waveguides with integrated grating couplers. Appl. Spectrosc. 67, 1057–1063 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Chen, J. et al. Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers. Opt. Express 13, 5953–5960 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Kosower, E.M. et al. Surface-enhanced infrared absorption and amplified spectra on planar silver halide fiber. J. Phys. Chem. B 108, 12633–12636 (2004).

    Article  CAS  Google Scholar 

  16. Mizaikoff, B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 42, 8683–8699 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Flavin, K. et al. A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing. Int. J. Environ. Anal. Chem. 86, 401–415 (2006).

    Article  CAS  Google Scholar 

  18. Steiner, H. et al. In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Liska, I. Fifty years of solid-phase extraction in water analysis: historical development and overview. J. Chromatogr. A 885, 3–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wilkins, A.L., Singh-Thandi, M. & Langdon, A.G. Pulp mill sourced organic compounds and sodium levels in water and sediments from the Tarawera River, New Zealand. Bull. Environ. Contam. Toxicol. 57, 434–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Martinez, E. et al. Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 959, 181–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ayad, M.M., El-Hefnawey, G. & Torad, N.L. Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons. Sens. Actuator B-Chem. 134, 887–894 (2008).

    Article  CAS  Google Scholar 

  23. Sanvicens, N. et al. Determination of haloanisols in white wine by immunosorbent solid-phase extraction followed by enzyme-linked immunosorbent assay. J. Agric. Food Chem. 54, 9176–9183 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wittkamp, B.L., Hawthorne, S.B. & Tilotta, D.C. Determination of aromatic compounds in water by solid phase microextraction and ultraviolet absorption spectroscopy. 1. Methodology. Anal. Chem. 69, 1197–1203 (1997).

    Article  CAS  Google Scholar 

  25. Wittkamp, B.L. & Tilotta, D.C. Determination of BTEX compounds in water by solid-phase microextraction and Raman spectroscopy. Anal. Chem. 67, 600–605 (1995).

    Article  CAS  Google Scholar 

  26. Carr, J.W. & Harris, J.M. In situ fluorescence detection of polycyclic aromatic hydrocarbons following preconcentration on alkylated silica adsorbents. Anal. Chem. 60, 698–702 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Mizaikoff, B. Mid-infrared evanescent wave sensors: a novel approach for subsea monitoring. Meas. Sci. Technol. 10, 1185–1194 (1999).

    Article  CAS  Google Scholar 

  28. Kraft, M. et al. New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system. Appl. Spectrosc. 57, 591–599 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Theodoridou, K. & Yu, P. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle. J. Agric. Food Chem. 61, 5449–5458 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, X. & Chorover, J. In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy. Colloids Surf. B Biointerfaces 71, 169–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Suci, P.A., Geesey, G.G. & Tyler, B.J. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Candida albicans biofilms. J. Microbiol. Methods 46, 193–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bremer, P.J. & Geesey, G.G. An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling 3, 89–100 (1991).

    Article  CAS  Google Scholar 

  33. Lorite, G.S. et al. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. J. Colloid Interface Sci. 359, 289–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lorite, G.S. et al. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Colloids Surf. B Biointerfaces 102, 519–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen, T., Roddick, F.A. & Fan, L. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2, 804–840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, W., Liu, X.-Y., Wang, L.-F., Yu, H.-Q. & Mizaikoff, B. Probing membrane fouling via infrared attenuated total reflection mapping coupled with multivariate curve resolution. Chem. Phys. Chem. doi:10.1002/cphc.201500932 (2015).

  37. Kraft, M. et al. New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system. Appl. Spectrosc. 57, 591–599 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Stockbarger, D.C. The production of large single crystals of lithium fluoride. Rev. Sci. Instrum. 7, 133–136 (1936).

    Article  CAS  Google Scholar 

  39. Baker, M.J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dobbs, G.T. et al. Mid-infrared chemical sensors utilizing plasma-deposited fluorocarbon membranes. Anal. Chem. 79, 9566–9571 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Riccardi, C.S., Hess, D.W. & Mizaikoff, B. Surface-modified ZnSe waveguides for label-free infrared attenuated total reflection detection of DNA hybridization. Analyst 136, 4906–4911 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Yu, C., Ganjoo, A., Jain, H., Pantano, C.G. & Irudayaraj, J. Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films. Anal. Chem. 78, 2500–2506 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC) and the Research Grants Council (RGC) of Hong Kong Joint Research Scheme (21261160489), and the Program for Changjiang Scholars and Innovative Research Team at the University of Science and Technology of China for partial support of this study. We also acknowledge The Natural Science Foundation of China (21505074), the Natural Science Foundation of Jiangsu Province (BK20140781), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

R.L., W.-W.L., B.M. and H.Q.Y. designed the experiments; R.L. conducted the experiments; A.K. and Y.R. fabricated and provided the fiber; R.L. and G.-P.S. conducted the data processing; R.L., W.W.L., B.M. and H.-Q.Y. wrote and edited the manuscript. All authors contributed to discussion on the results and implications of the manuscript.

Corresponding authors

Correspondence to Boris Mizaikoff or Han-Qing Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 (a) Curve fitting for BSA solution IR-ATR spectra in the amide I region together with the respective best-fitted individual band components, and (b) BSA secondary structure represented as a function of temperature.

Supplementary Figure 2 Synchronous (a) and asynchronous (b) two-dimensional IR-ATR correlation spectra of BSA.

Supplementary Figure 3 Schematic of the custom-made stainless mold for planar silver halide fabrication.

Supplementary Figure 4 Construction of the flow-cell with dimensional details.

Supplementary Figure 5 Changes of IR absorbance for 300 ppb (v/v) MAHs in aqueous solution with time.

Supplementary Figure 6 Calibration profiles of low-concentration VOC mixtures (10 to 70 ppb).

(a) Four monoaromatic hydrocarbons (toluene (TL), o-xylene (OX), m-xylene (MX), and p-xylene (PX), benzene is not shown for low correlation coefficient), and (b) six chlorinated hydrocarbons (monochlorobenzene (MCB), 1,2-dichlorobenzene (o-DCB), 1,3-dichlorobenzene (m-DCB), chloroform (CF), trichloroethylene (TCE), and perchloroethylene (PCE)).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Li, WW., Mizaikoff, B. et al. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nat Protoc 11, 377–386 (2016). https://doi.org/10.1038/nprot.2016.013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.013

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing