Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes

Abstract

Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a 'grafting to' method or mixed hydrophilic and hydrophobic polymer brushes using tandem 'grafting to' and 'grafting from' methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the synthesis of amphiphilic gold nanocrystals grafted with polymer brushes.
Figure 2: Experimental setup for the preparation of amphiphilic gold nanoparticles.
Figure 3: Characterization of amphiphilic gold nanoparticles.
Figure 4: Characterization of amphiphilic gold nanorods.
Figure 5
Figure 6: Self-assembly of vesicular structures.
Figure 7: Characterization of gold nanovesicles.
Figure 8: Characterization of AuNR@PEG/PLA vesicles.

Similar content being viewed by others

References

  1. Graham, D., Thompson, D.G., Smith, W.E. & Faulds, K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3, 548–551 (2008).

    Article  CAS  Google Scholar 

  2. Halas, N.J. Plasmonics: an emerging field fostered by nano letters. Nano Lett. 10, 3816–3822 (2010).

    Article  CAS  Google Scholar 

  3. Halas, N.J., Lal, S., Chang, W.-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  Google Scholar 

  4. Hutter, E. & Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  CAS  Google Scholar 

  5. Skrabalak, S.E., Au, L., Li, X. & Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2, 2182–2190 (2007).

    Article  CAS  Google Scholar 

  6. Cheng, L., Liu, A.P., Peng, S. & Duan, H.W. Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. ACS Nano 4, 6098–6104 (2010).

    Article  CAS  Google Scholar 

  7. Giljohann, D.A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl. 49, 3280–3294 (2010).

    Article  CAS  Google Scholar 

  8. Lim, D.-K. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6, 452–460 (2011).

    Article  CAS  Google Scholar 

  9. Morton, S.M., Silverstein, D.W. & Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962–3994 (2011).

    Article  CAS  Google Scholar 

  10. Rosi, N.L. & Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  CAS  Google Scholar 

  11. Klinkova, A., Choueiri, R.M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

    Article  CAS  Google Scholar 

  12. Kneipp, J., Kneipp, H. & Kneipp, K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008).

    Article  CAS  Google Scholar 

  13. Cheng, L., Song, J., Yin, J. & Duan, H. Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J. Phys. Chem. Lett. 2258–2262 (2011).

  14. He, J. et al. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc. 135, 7974–7984 (2013).

    Article  CAS  Google Scholar 

  15. Xu, L. et al. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 134, 1699–1709 (2011).

    Article  Google Scholar 

  16. Sun, C. et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J. Am. Chem. Soc. 133, 8617–8624 (2011).

    Article  CAS  Google Scholar 

  17. Kim, N.H., Lee, S.J. & Moskovits, M. Reversible tuning of SERS hot spots with aptamers. Adv. Mater. 23, 4152–4156 (2011).

    Article  CAS  Google Scholar 

  18. Murthy, V.S., Cha, J.N., Stucky, G.D. & Wong, M.S. Charge-driven flocculation of poly(L-lysine)gold nanoparticle assemblies leading to hollow microspheres. J. Am. Chem. Soc. 126, 5292–5299 (2004).

    Article  CAS  Google Scholar 

  19. Pornpattananangkul, D. et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc. 133, 4132–4139 (2011).

    Article  CAS  Google Scholar 

  20. Rasch, M.R. et al. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 10, 3733–3739 (2010).

    Article  CAS  Google Scholar 

  21. Maye, M.M., Chun, S.C., Han, L., Rabinovich, D. & Zhong, C.-J. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem. Soc. 124, 4958–4959 (2002).

    Article  CAS  Google Scholar 

  22. Han, X., Liu, Y. & Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14, 2466–2470 (2014).

    Article  CAS  Google Scholar 

  23. Al-Jamal, W.T. & Kostarelos, K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44, 1094–1104 (2011).

    Article  CAS  Google Scholar 

  24. Discher, D.E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  25. Tanner, P. et al. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 44, 1039–1049 (2011).

    Article  CAS  Google Scholar 

  26. Discher, B.M., Hammer, D.A., Bates, F.S. & Discher, D.E. Polymer vesicles in various media. Curr. Opin. Chem. Biol. 5, 125–131 (2000).

    CAS  Google Scholar 

  27. Zhuang, J., Gordon, M.R., Ventura, J., Li, L. & Thayumanavan, S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 42, 7421–7435 (2013).

    Article  CAS  Google Scholar 

  28. Vigderman, L., Khanal, B.P. & Zubarev, E.R. Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012).

    Article  CAS  Google Scholar 

  29. Shenhar, R., Norsten, T.B. & Rotello, V.M. Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657–669 (2005).

    Article  CAS  Google Scholar 

  30. Tang, Z. & Kotov, N.A. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005).

    Article  CAS  Google Scholar 

  31. Amstad, E., Kim, S.-H. & Weitz, D.A. Photo- and thermoresponsive polymersomes for triggered release. Angew. Chem. Int. Ed. Engl. 124, 12667–12671 (2012).

    Article  Google Scholar 

  32. Li, Y., Smith, A.E., Lokitz, B.S. & McCormick, C.L. In situ formation of gold-'decorated' vesicles from a RAFT-synthesized, thermally responsive block copolymer. Macromolecules 40, 8524–8526 (2007).

    Article  CAS  Google Scholar 

  33. Song, J. et al. Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. J. Am. Chem. Soc. 133, 10760–10763 (2011).

    Article  CAS  Google Scholar 

  34. Song, J. et al. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. Nanoscale 5, 5816–5824 (2013).

    Article  CAS  Google Scholar 

  35. Song, J., Pu, L., Zhou, J., Duan, B. & Duan, H. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7, 9947–9960 (2013).

    Article  CAS  Google Scholar 

  36. Song, J., Zhou, J. & Duan, H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 134, 13458–13469 (2012).

    Article  CAS  Google Scholar 

  37. Lin, J. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013).

    Article  CAS  Google Scholar 

  38. Huang, P. et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. Engl. 52, 13958–13964 (2013).

    Article  CAS  Google Scholar 

  39. Nederberg, F., Connor, E.F., Moller, M., Glauser, T. & Hedrick, J.L. New paradigms for organic catalysts: the first organocatalytic living polymerization. Angew. Chem. Int. Ed. Engl. 40, 2712–2715 (2001).

    Article  CAS  Google Scholar 

  40. Wang, Y., Xu, H. & Zhang, X. Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials. Adv. Mater. 21, 2849–2864 (2009).

    Article  CAS  Google Scholar 

  41. Kang, Y. & Taton, T.A. Controlling shell thickness in core–shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants. Macromolecules 38, 6115–6121 (2005).

    Article  CAS  Google Scholar 

  42. He, J., Liu, Y., Babu, T., Wei, Z. & Nie, Z. Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J. Am. Chem. Soc. 134, 11342–11345 (2012).

    Article  CAS  Google Scholar 

  43. Sinha Ray, S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc. Chem. Res. 45, 1710–1720 (2012).

    Article  CAS  Google Scholar 

  44. Jouault, N., Lee, D., Zhao, D. & Kumar, S.K. Block-copolymer-mediated nanoparticle dispersion and assembly in polymer nanocomposites. Adv. Mater. 26, 4031–4036 (2014).

    Article  CAS  Google Scholar 

  45. Zubarev, E.R., Xu, J., Sayyad, A. & Gibson, J.D. Amphiphilic gold nanoparticles with V-shaped arms. J. Am. Chem. Soc. 128, 4958–4959 (2006).

    Article  CAS  Google Scholar 

  46. Nikoobakht, B. & El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  47. Kang, Y. & Taton, T. Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angew. Chem. Int. Ed. Engl. 44, 409–412 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural research program (IRP) of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the US National Institutes of Health (NIH) and the National Science Foundation of China (grant 81401465 to P. Huang).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and X.C. conceived and designed the research; J.S. performed the experiments and contributed new reagents and analytical tools; J.S. and P.H. analyzed the data; and J.S. and X.C. wrote the manuscript.

Corresponding author

Correspondence to Xiaoyuan Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Huang, P. & Chen, X. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes. Nat Protoc 11, 2287–2299 (2016). https://doi.org/10.1038/nprot.2016.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.137

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research