Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION

Abstract

Electron cryo-tomography (cryo-ET) is a technique that is used to produce 3D pictures (tomograms) of complex objects such as asymmetric viruses, cellular organelles or whole cells from a series of tilted electron cryo-microscopy (cryo-EM) images. Averaging of macromolecular complexes found within tomograms is known as subtomogram averaging, and this technique allows structure determination of macromolecular complexes in situ. Subtomogram averaging is also gaining in popularity for the calculation of initial models for single-particle analysis. We describe herein a protocol for subtomogram averaging from cryo-ET data using the RELION software (http://www2.mrc-lmb.cam.ac.uk/relion). RELION was originally developed for cryo-EM single-particle analysis, and the subtomogram averaging approach presented in this protocol has been implemented in the existing workflow for single-particle analysis so that users may conveniently tap into existing capabilities of the RELION software. We describe how to calculate 3D models for the contrast transfer function (CTF) that describe the transfer of information in the imaging process, and we illustrate the results of classification and subtomogram averaging refinement for cryo-ET data of purified hepatitis B capsid particles and Saccharomyces cerevisiae 80S ribosomes. Using the steps described in this protocol, along with the troubleshooting and optimization guidelines, high-resolution maps can be obtained in which secondary structure elements are resolved subtomogram.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of the image processing protocol.
Figure 2: CTF estimation for the 3D CTF model.
Figure 3: The RELION-1.4 graphical user interface.
Figure 4: 2D Classification and initial model generation.
Figure 5: 3D auto-refinement and classification using the regularized-likelihood algorithm in RELION.
Figure 6: Subtomogram analysis of particles at different Z heights.

Similar content being viewed by others

Accession codes

Accessions

Electron Microscopy Data Bank

References

  1. Bai, X.C., McMullan, G. & Scheres, S.H. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  Google Scholar 

  2. Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).

    Article  CAS  Google Scholar 

  3. Baumeister, W. Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679–684 (2002).

    Article  CAS  Google Scholar 

  4. Briggs, J.A. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23, 261–267 (2013).

    Article  CAS  Google Scholar 

  5. Beck, M., Lucić, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    Article  CAS  Google Scholar 

  6. Grünewald, K. et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398 (2003).

    Article  Google Scholar 

  7. Briggs, J.A. et al. Structure and assembly of immature HIV. Proc. Natl. Acad. Sci. USA 106, 11090–11095 (2009).

    Article  CAS  Google Scholar 

  8. Förster, F., Medalia, O., Zauberman, N., Baumeister, W. & Fass, D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl. Acad. Sci. USA 102, 4729–4734 (2005).

    Article  Google Scholar 

  9. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    Article  CAS  Google Scholar 

  10. Schur, F.K. et al. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517, 505–508 (2015).

    Article  CAS  Google Scholar 

  11. Pfeffer, S. et al. Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6, 8403 (2015).

    Article  CAS  Google Scholar 

  12. Rigort, A. & Plitzko, J.M. Cryo-focused-ion-beam applications in structural biology. Arch. Biochem. Biophys. 581, 122–130 (2015).

    Article  CAS  Google Scholar 

  13. Hrabe, T. et al. PyTom: a Python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).

    Article  CAS  Google Scholar 

  14. Bharat, T.A., Russo, C.J., Löwe, J., Passmore, L.A. & Scheres, S.H. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).

    Article  CAS  Google Scholar 

  15. Scheres, S.H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    Article  CAS  Google Scholar 

  16. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  17. Bharat, T.A. et al. Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. USA 111, 8233–8238 (2014).

    Article  CAS  Google Scholar 

  18. Bharat, T.A. et al. Structure of the immature retroviral capsid at 8 Å resolution by cryo-electron microscopy. Nature 487, 385–389 (2012).

    Article  CAS  Google Scholar 

  19. Bartesaghi, A., Lecumberry, F., Sapiro, G. & Subramaniam, S. Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20, 2003–2013 (2012).

    Article  CAS  Google Scholar 

  20. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  21. Heymann, J. & Belnap, D. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    Article  CAS  Google Scholar 

  22. Castano-Diez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012).

    Article  Google Scholar 

  23. Huiskonen, J.T. et al. Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J. Virol. 84, 4889–4897 (2010).

    Article  CAS  Google Scholar 

  24. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  25. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  26. Agulleiro, J.I. & Fernandez, J.J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).

    Article  CAS  Google Scholar 

  27. Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  28. Hall, S.R. The star file–a new format for electronic data transfer and archiving. J. Chem. Inf. Comp. Sci. 31, 326–333 (1991).

    Article  CAS  Google Scholar 

  29. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  30. Eibauer, M. et al. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J. Struct. Biol. 180, 488–496 (2012).

    Article  CAS  Google Scholar 

  31. Scheres, S.H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014).

    Article  Google Scholar 

  32. Yu, L., Snapp, R.R., Ruiz, T. & Radermacher, M. Projection-based volume alignment. J. Struct. Biol. 182, 93–105 (2013).

    Article  CAS  Google Scholar 

  33. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Article  CAS  Google Scholar 

  34. Scheres, S.H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  35. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  36. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  Google Scholar 

  37. Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  Google Scholar 

  38. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  Google Scholar 

  39. Patwardhan, A. et al. A 3D cellular context for the macromolecular world. Nat. Struct. Mol. Biol. 21, 841–845 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X.C. Bai, I.S. Fernandez and K. Vinothhumar for help with sample preparation; J. Grimmett and T. Darling for assistance with high-performance computing; S. Chen and C. Savva for assistance with electron microscopy; and J. Löwe for helpful discussions. This work was supported by funds from EMBO (ALTF 3-2013 and aALTF 778-2015 to T.A.M.B.) and the UK Medical Research Council (MC_UP_A025_1013 to S.H.W.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.A.M.B. performed tomographic data acquisition and data processing, and developed the Python script for pre-processing of the subtomograms. S.H.W.S. developed the subtomogram procedures inside RELION. Both authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Tanmay A M Bharat or Sjors H W Scheres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The data set of seven tomograms of 80S ribosomes from S. cerevisiae has been deposited at the EMPIAR database (EMPIAR-10045), and the final map from 3D auto-refinement of these data has been submitted to the EMDB (EMD-3228).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharat, T., Scheres, S. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11, 2054–2065 (2016). https://doi.org/10.1038/nprot.2016.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics