Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures

Abstract

Primary cultures of rodent sensory neurons are widely used to investigate the cellular and molecular mechanisms involved in pain, itch, nerve injury and regeneration. However, translation of these preclinical findings may be greatly improved by direct validation in human tissues. We have developed an approach to extract and culture human sensory neurons in collaboration with a local organ procurement organization (OPO). Here we describe the surgical procedure for extraction of human dorsal root ganglia (hDRG) and the necessary modifications to existing culture techniques to prepare viable adult human sensory neurons for functional studies. Dissociated sensory neurons can be maintained in culture for >10 d, and they are amenable to electrophysiological recording, calcium imaging and viral gene transfer. The entire process of extraction and culturing can be completed in <7 h, and it can be performed by trained graduate students. This approach can be applied at any institution with access to organ donors consenting to tissue donation for research, and is an invaluable resource for improving translational research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surgical extraction of hDRG using ventral approach.
Figure 2: Cleaning of hDRG before dissociation.
Figure 3: Dissociated hDRG neurons over time in vitro.
Figure 4: Immunocytochemical analysis of cultured hDRG neurons.
Figure 5: Calcium imaging of human sensory neurons for the characterization of population responses to algogens and pruritogens.
Figure 6: Long-term culture with neurotrophic factors does not alter hDRG excitability.
Figure 7: Viral transduction of human sensory neurons for expression of optogenetic tools to manipulate neuronal firing.

Similar content being viewed by others

References

  1. Lacroix-Fralish, M.L., Ledoux, J.B. & Mogil, J.S. The pain genes database: an interactive web browser of pain-related transgenic knockout studies. Pain 131, 3.e1-4 (2007).

    Article  PubMed  Google Scholar 

  2. Chizh, B.A. et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132, 132–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kivitz, A.J. et al. Efficacy and safety of tanezumab versus naproxen in the treatment of chronic low back pain. Pain 154, 1009–1021 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Skljarevski, V. et al. Efficacy of duloxetine in patients with chronic pain conditions. Current Drug Ther. 6, 296–303 (2011).

    Article  CAS  Google Scholar 

  5. Wernicke, J.F. et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology 67, 1411–1420 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hill, R. NK1 (substance P) receptor antagonists–why are they not analgesic in humans? Trends in Pharmacol. Sci. 21, 244–246 (2000).

    Article  CAS  Google Scholar 

  7. Taneja, A., Di Iorio, V.L., Danhof, M. & Della Pasqua, O. Translation of drug effects from experimental models of neuropathic pain and analgesia to humans. Drug Discov. Today 17, 837–849 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Mogil, J.S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Contopoulos-Ioannidis, D.G., Ntzani, E. & Ioannidis, J.P. Translation of highly promising basic science research into clinical applications. Am. J. Med. 114, 477–484 (2003).

    Article  PubMed  Google Scholar 

  10. Ergorul, C. & Levin, L.A. Solving the lost in translation problem: improving the effectiveness of translational research. Curr. Opin. Pharmacol. 13, 108–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Hug, A. & Weidner, N. From bench to beside to cure spinal cord injury: lost in translation? Int. Rev. Neurobiol. 106, 173–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Gereau, R.W. et al. A pain research agenda for the 21st century. J. Pain 15, 1203–1214 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han, L. et al. A subpopulation of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu, Q. et al. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci. Signal. 4, ra45 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Solinski, H.J., Gudermann, T. & Breit, A. Pharmacology and signaling of MAS-related G protein-coupled receptors. Pharmacol. Rev. 66, 570–597 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Solinski, H.J., Zierler, S., Gudermann, T. & Breit, A. Human sensory neuron-specific Mas-related G protein-coupled receptors-X1 sensitize and directly activate transient receptor potential cation channel V1 via distinct signaling pathways. J. Biol. Chem. 287, 40956–40971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X.L., Lee, K.Y., Priest, B.T., Belfer, I. & Gold, M.S. Inflammatory mediator-induced modulation of GABA currents in human sensory neurons. Neuroscience 310, 401–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y. et al. The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J. Neurosci. 35, 13487–13500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anand, U. et al. Angiotensin II type 2 receptor (AT2 R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. Eur. J. Pain 17, 1012–1026 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Davidson, S. et al. Human sensory neurons: membrane properties and sensitization by inflammatory mediators. Pain 155, 1861–1870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davidson, S. et al. Group II mGluRs suppress hyperexcitability in mouse and human nociceptors. Pain doi:10.1097/j.pain.0000000000000621, published online (21 May 2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iyer, S.M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, S.I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Copits, B.A., Pullen, M.Y. & Gereau, R.W. Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain doi:10.1097/j.pain.0000000000000620 (2016).

  26. Yang, D. & Gereau, R.W. Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception. J. Neurosci. 22, 6388–6393 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, H.J., Bhave, G. & Gereau, R.W. Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J. Neurosci. 22, 7444–7452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, X. & Gereau, R.W. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 26, 246–255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, D. & Gereau, R.W. Group II metabotropic glutamate receptors inhibit cAMP-dependent protein kinase-mediated enhancemednt of tetrodotoxin-resistant sodium currents in mouse dorsal root ganglion neurons. Neurosci. Lett. 357, 159–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Valtcheva, M.V., Davidson, S., Zhao, C., Leitges, M. & Gereau, R.W. Protein kinase Cdelta mediates histamine-evoked itch and responses in pruriceptors. Mol. Pain 11, 1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Valtcheva, M.V., Samineni, V.K., Golden, J.P., Gereau, R.W. & Davidson, S. Enhanced nonpeptidergic intraepidermal fiber density and an expanded subset of chloroquine-responsive trigeminal neurons in a mouse model of dry skin itch. J. Pain 16, 346–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheahan, T.D., Copits, B.A., Golden, J.P. & Gereau, R.W. Voluntary exercise training: analysis of mice in uninjured, inflammatory, and nerve-injured pain states. PLoS One 10, e0133191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Blanchard, J.W. et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat. Neurosci. 18, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wainger, B.J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ting, J.T., Daigle, T.L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 1183, 221–242 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hille, B. The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol. 58, 599–619 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siuda, E.R. et al. Spatiotemporal control of opioid signaling and behavior. Neuron 86, 923–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goverdhana, S. et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol. Ther. 12, 189–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Glorioso, J.C. & Fink, D.J. Herpes vector-mediated gene transfer in the treatment of chronic pain. Mol. Ther. 17, 13–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Incontro, S., Asensio, C.S., Edwards, R.H. & Nicoll, R.A. Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83, 1051–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhave, G. et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 100, 12480–12485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the donors and their families for their generous donations to science. We thank Mid-America Transplant for providing access to donor tissue and their facilities, and especially P. Silva and J. Lemen for their tremendous help coordinating and performing hDRG extractions. We thank A. Vannucci and Y. Lin for helpful discussions and guidance in establishing the research collaboration with Mid-America Transplant. We thank O. Crisp from the Washington University Pathology Department for demonstrating DRG removal using the autopsy saw. We thank J. Sinn-Hanlon for generating the illustrations in Figure 1. We thank D. Brenner for helpful discussions on the development of extraction procedures. This work was supported by US National Institute of Neurological Disorders and Stroke grants R01NS042595 (R.W.G.), F31NS089130 (M.V.V.), F32NS076324 (S.D.), and T32GM108539 (B.A.C.) and T32GM007067-41 (M.Y.P.) from the US National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

M.V.V., S.D., B.A.C. and K.D. developed the surgical approach. M.V.V., S.D., B.A.C. and T.D.S. optimized existing rodent culturing protocol to establish viable hDRG cultures. M.V.V., B.A.C., T.D.S., M.Y.P. and J.G.M. contributed to applications including immunocytochemistry, calcium imaging, electrophysiology and optogenetic experiments. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Robert W Gereau IV.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valtcheva, M., Copits, B., Davidson, S. et al. Surgical extraction of human dorsal root ganglia from organ donors and preparation of primary sensory neuron cultures. Nat Protoc 11, 1877–1888 (2016). https://doi.org/10.1038/nprot.2016.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing