Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Direct metabolomics for plant cells by live single-cell mass spectrometry

Abstract

Live single-cell mass spectrometry (live MS) provides a mass spectrum that shows thousands of metabolite peaks from a single live plant cell within minutes. By using an optical microscope, a cell is chosen for analysis and a metal-coated nanospray microcapillary tip is used to remove the cell's contents. After adding a microliter of ionization solvent to the opposite end of the tip, the trapped contents are directly fed into the mass spectrometer by applying a high voltage between the tip and the inlet port of the spectrometer to induce nanospray ionization. Proteins are not detected because of insufficient sensitivity. Metabolite peaks are identified by exact mass or tandem mass spectrometry (MS/MS) analysis, and isomers can be separated by combining live MS with ion-mobility separation. By using this approach, spectra can be acquired in 10 min. In combination with metabolic maps and/or molecular databases, the data can be annotated into metabolic pathways; the data analysis takes 30 min to 4 h, depending on the MS/MS data availability from databases. This method enables the analysis of a number of metabolites from a single cell with rapid sampling at sub-attomolar-level sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic principle of live plant single-cell MS.
Figure 2: Experimental setup.
Figure 3: Isomer separation of catechins from a single plant leaf cell by ion mobility-tripleQ/MS.
Figure 4
Figure 5: Results of live single plant cell MS.
Figure 6: Principal component analyses of live single plant cell mass spectra.
Figure 7: Typical spectra in live single plant cell MS.

Similar content being viewed by others

References

  1. Lange, B.M. Single-cell genomics. Curr. Opin. Plant Biol. 8, 236–241 (2005).

    Article  CAS  Google Scholar 

  2. Fan, H.C., Wang, J.B., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51 (2011).

    Article  CAS  Google Scholar 

  3. Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).

    Article  CAS  Google Scholar 

  4. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    Article  CAS  Google Scholar 

  5. Sanchez-Freire, V., Ebert, D.A., Kalisky, T., Quake, R.S. & Wu, C.J.G. Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat. Protoc. 7, 829–838 (2012).

    Article  CAS  Google Scholar 

  6. Wang, J.B., Fan, H.C., Behr, B. & Quake, S.R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  Google Scholar 

  7. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  Google Scholar 

  8. Chitsaz, H. et al. Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat. Biotechnol. 29, 915–921 (2011).

    Article  CAS  Google Scholar 

  9. Geigl, B.J. & Speicher, R.M. Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis. Nat. Protoc. 2, 3173–3184 (2007).

    Article  CAS  Google Scholar 

  10. Esumi, S., Kaneko, R., Kawamura, Y. & Yagi, T. Split single-cell RT-PCR analysis of Purkinje cells. Nat. Protoc. 1, 2143–2151 (2006).

    Article  CAS  Google Scholar 

  11. Tang, F., Lao, K. & Surani, A.M. Development and applications of single cell transcriptome analysis. Nat. Methods 8, S6–S11 (2011).

    Article  CAS  Google Scholar 

  12. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  13. Tang, F.C. et al. RNA-seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  Google Scholar 

  14. Tang, F.C. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  15. Pinaud, R., Mello, V.C., Velho, A.T., Wynne, D.R. & Tremere, A.L. Detection of two mRNA species at single-cell resolution by double-fluorescence in situ hybridization. Nat. Protoc. 3, 1370–1379 (2008).

    Article  CAS  Google Scholar 

  16. Jayaraman, D., Forshey, L.K., Grimsrud, A.P. & Ané, M.J. Leveraging proteomics to understand plant–microbe interactions. Front. Plant Sci. 3, 44 (2012).

    Article  Google Scholar 

  17. Dai, S. & Chen, S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol. Cell. Proteomics 11, 1622–1630 (2012).

    Article  Google Scholar 

  18. Irish, J.M., Kotecha, N. & Nolan, G.P. Innovation: mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat. Rev. Cancer 6, 146–155 (2006).

    Article  CAS  Google Scholar 

  19. Kellogg, A.R., Gómez-Sjöberg, R., Leyrat, A.A. & Tay, S. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nat. Protoc. 9, 1713–1726 (2014).

    Article  CAS  Google Scholar 

  20. Misra, B.B., Assmann, M.S. & Chen, C. Plant single-cell and single-cell-type metabolomics. Trends Plant Sci. 14, 1360–1385 (2014).

    Google Scholar 

  21. Bjarnholt, N., Li, B., D'Alvise, J. & Janfelt, C. Mass spectrometry imaging of plant metabolites—principles and possibilities. Nat. Prod. Rep. 31, 818–837 (2014).

    Article  CAS  Google Scholar 

  22. Rubakhin, S.S., Lanni, J.E. & Sweedler, V.J. Progress toward single cell metabolomics. Curr. Opin. Biotechnol. 24, 95–104 (2013).

    Article  CAS  Google Scholar 

  23. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1201–1211 (2011).

    Google Scholar 

  24. Lin, Y.Q., Trouillon, R., Safina, G. & Ewing, A.G. Chemical analysis of single cells. Anal. Chem. 83, 4369–4392 (2011).

    Article  CAS  Google Scholar 

  25. Svatos, A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal. Chem. 83, 5037–5044 (2011).

    Article  CAS  Google Scholar 

  26. Lapainis, T., Rubakhin, S.S. & Sweedler, V.J. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81, 5858–5864 (2009).

    Article  CAS  Google Scholar 

  27. Cai, L., Friedman, N. & Xie, S.X. Stochastic protein expression in individual cells at the single-molecule level. Nature 440, 358–362 (2006).

    Article  CAS  Google Scholar 

  28. Jones, M.A. et al. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3, e01741 (2014).

    Article  Google Scholar 

  29. Wong, K.F., Haffner, C., Huttner, B.W. & Taverna, E. Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue. Nat. Protoc. 9, 1170–1182 (2014).

    Article  Google Scholar 

  30. Stender, A.S. et al. Single cell optical imaging and spectroscopy. Chem. Rev. 113, 2469–2527 (2013).

    Article  CAS  Google Scholar 

  31. Zrazhevskiy, P., True, D.L. & Gao, X. Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat. Protoc. 8, 1852–1869 (2013).

    Article  CAS  Google Scholar 

  32. Thurber, G.M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    Article  Google Scholar 

  33. Lanni, E.J., Rubakhin, S.S. & Sweedler, J.V. Mass spectrometry imaging and profiling of single cells. J. Proteomics 75, 5036–5051 (2012).

    Article  CAS  Google Scholar 

  34. Young, W.J. et al. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc. 7, 80–88 (2012).

    Article  CAS  Google Scholar 

  35. Li, M.Q., Xu, J., Romero-Gonzalez, M., Banwart, S.A. & Huang, W.E. Single cell Raman spectroscopy for cell sorting and imaging. Curr. Opin. Biotechnol. 23, 56–63 (2011).

    Article  CAS  Google Scholar 

  36. Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nat. Methods 8, S30–S35 (2011).

    Article  CAS  Google Scholar 

  37. Smith, Z.D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol. 28, 521–526 (2010).

    Article  CAS  Google Scholar 

  38. Neugebauer, U., Clement, J.H., Bocklitz, T., Krafft, C. & Popp, J. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J. Biophotonics 3, 579–587 (2010).

    Article  CAS  Google Scholar 

  39. Judkewitz, B., Rizzi, M., Kitamura, K. & Häusser, M. Targeted single-cell electroporation of mammalian neurons in vivo. Nat. Protoc. 4, 862–869 (2009).

    Article  CAS  Google Scholar 

  40. Urban, L.P., Schmid, T., Amantonico, A. & Zenobi, R. Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal. Chem. 83, 1843–1849 (2011).

    Article  CAS  Google Scholar 

  41. Amantonico, A., Urban, L.P., Fagerer, R.S., Balabin, M.R. & Zenobi, R. Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal. Chem. 82, 7394–7400 (2010).

    Article  CAS  Google Scholar 

  42. Gholipour, Y., Nonami, H. & Erra-Balsells, R. Application of pressure probe and UV-MALDI-TOF MS for direct analysis of plant underivatized carbohydrates in subpicoliter single-cell cytoplasm extract. J. Am. Soc. Mass Spectrom. 19, 1841–1848 (2008).

    Article  CAS  Google Scholar 

  43. Jimenez, C.R. et al. Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons,. J. Neurochem. 62, 404–407 (1994).

    Article  CAS  Google Scholar 

  44. Rubakhin, S.S. & Sweedler, J.V. Quantitative measurements of cell-cell signaling peptides with single-cell MALDI MS. Anal. Chem. 80, 7128–7136 (2008).

    Article  CAS  Google Scholar 

  45. Li, L.J., Garden, R.W. & Sweedler, J.V. Single-cell MALDI: a new tool for direct peptide profiling. Trends Biothechnol. 18, 151–160 (2000).

    Article  CAS  Google Scholar 

  46. Masujima, T., Tsuyama, T. & Hasegawa, T. Videovisualization of dynamic cell response and its molecular analysis for nanomedicine. Nanomedicine 1, 331–343 (2006).

    Article  CAS  Google Scholar 

  47. Masujima, T. Visualized single cell dynamics and analysis of molecular tricks. Anal. Chim. Acta 400, 33–43 (1999).

    Article  CAS  Google Scholar 

  48. Sirikatitham, A. et al. Resin-packed nanoelectrospray in combination with video and mass spectrometry for the direct and real-time molecular analysis of mast cells. Rapid Commun. Mass Spectrom. 21, 385–390 (2007).

    Article  CAS  Google Scholar 

  49. Masujima, T., Tsuyama, N. & Mizuno, H. Capturing of cell fluid and analysis of its components under observation of cells and instruments for the cell fluid capturing and the analysis. Patent nos. JP-PAT;5317983, EU-PAT;2216396, China-PAT;1369602, and US patent application no.12/739660 (2007).

  50. Tsuyama, N., Mizuno, H., Tokunaga, E. & Masujima, T. Live single-cell molecular analysis by video-mass spectrometry. Anal. Sci. 24, 559–561 (2008).

    Article  CAS  Google Scholar 

  51. Mizuno, H., Tsuyama, N., Harada, T. & Masujima, T. Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J. Mass Spectrom. 43, 1692–1700 (2008).

    Article  CAS  Google Scholar 

  52. Masujima, T. Live single-cell mass spectrometry. Anal. Sci. 25, 953–960 (2009).

    Article  CAS  Google Scholar 

  53. Tejedor, L.M., Mizuno, H., Tsuyama, N., Harada, T. & Masujima, T. Direct single-cell molecular analysis of plant tissues by video mass spectrometry. Anal. Sci. 25, 1053–1055 (2009).

    Article  CAS  Google Scholar 

  54. Tejedor, L.M., Mizuno, H., Tsuyama, N., Harada, T. & Masujima, T. In situ molecular analysis of plant tissues by live single-cell mass spectrometry. Anal. Chem. 84, 5221–5228 (2012).

    Article  Google Scholar 

  55. Sakane, I. et al. Detecting substances in tea leaves by live single-cell mass. Proceedings of 61st ASMS Conference Poster no. MP660 (2013).

  56. Matsuda, S. et al. Distribution of metabolites and biosynthesis in a cell of a plant tissue analyzed by live single-cell mass spectrometry. Proceedings of 61st ASMS Conference Poster no. MP678 (2013).

  57. Fujii, T., Esaki, T., Date, S., Mizuno, H. & Masujima, T. Spatial analysis of phototropic metabolites in a plant cell by live single-cell mass spectrometry. Proceedings of 62nd ASMS Conference Poster no. MP417 (2014).

  58. Zhang, I.J., Li, X., Ouyang, Z. & Cooks, G.R. Direct analysis of steviol glycosides from Stevia leaves by ambient ionization mass spectrometry performed on whole leaves. Analyst 137, 3091–3098 (2012).

    Article  CAS  Google Scholar 

  59. Shrestha, B. & Vertes, A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81, 8265–8271 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Grant for Development of Systems and Technology for Advanced Measurement and Analysis by the Japan Science and Technology Agency (JST). We thank A. Makarov (Thermo Scientific) for his kind support in instrumentation using Orbitrap/MS, K. Karasawa (AB Sciex) for support in data analysis, P. Karagiannis (QBiC, RIKEN) for helping with the English in this manuscript and all students (Hiroshima University) and staff (QBiC, RIKEN) who have engaged in this live MS project.

Author information

Authors and Affiliations

Authors

Contributions

T.F., S.M., M.L.T., T.E., I.S., H.M. and N.T. carried out experiments and discussed and wrote partial drafts of the manuscript; T.M. designed and directed the study together with necessary instrumentation developments, and rearranged and wrote the final manuscript.

Corresponding author

Correspondence to Tsutomu Masujima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–3 (PDF 4121 kb)

41596_2015_BFnprot2015084_MOESM353_ESM.mpg

The trapping of a single plant cell (vacuole of a radish sprout cell) by sucking with a nanospray needle under a stereomicroscope. (MPG 1498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Matsuda, S., Tejedor, M. et al. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc 10, 1445–1456 (2015). https://doi.org/10.1038/nprot.2015.084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.084

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing