Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast

Abstract

Single-molecule localization-based superresolution microscopy methods allow the resolution of cellular structures in the range of tens of nanometers. However, these techniques are of limited use in current yeast labeling protocols, owing to problems with structural preservation. Here we describe an optimized sample preparation protocol that enables single-molecule localization microscopy at high resolution combined with improved structural preservation in Saccharomyces cerevisiae. The protocol uses small binders called nanobodies and an enzymatic labeling strategy to deliver organic dyes to the target protein. These small binders readily penetrate through the yeast cell wall and thus eliminate the requirement for its prior degradation, and they allow structural preservation. In addition, the small size of the binders reduces the distance of the dye to the target protein, and thus it reduces the localization error. The preparation of S. cerevisiae cells for superresolution imaging takes 2–4 h to perform. Researchers should have skills in yeast molecular biology, immunolabeling techniques and access to a microscope equipped for single-molecule imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The use of small binders conjugated with organic fluorophores renders cell wall digestion unnecessary in yeast immunocytochemistry.
Figure 2: Schematic of sample preparation of budding yeast for single-molecule localization microscopy.
Figure 3: Budding yeast expressing Cdc11 linked to GFP fixed with different chemicals.
Figure 4: Results from single-molecule localization microscopy experiments in S. cerevisiae.

Similar content being viewed by others

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mund, M., Kaplan, C. & Ries, J. Localization microscopy in yeast. in Quantitative Imaging in Cell Biology 253–271 (Elsevier, 2014).

  9. Stagge, F., Mitronova, G.Y., Belov, V.N., Wurm, C.A. & Jakobs, S. SNAP-, CLIP- and Halo-tag labelling of budding yeast cells. PLoS ONE 8, e78745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puchner, E.M., Walter, J.M., Kasper, R., Huang, B. & Lim, W.A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl. Acad. Sci. USA 110, 16015–16020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaner, N.C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pringle, J.R. et al. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31, 357–435 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. McMurray, M.A. & Thorner, J. Septin stability and recycling during dynamic structural transitions in cell division and development. Curr. Biol. 18, 1203–1208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaksonen, M., Toret, C.P. & Drubin, D.G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, K., Babcock, H.P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wendland, J. & Walther, A. Ashbya gossypii: a model for fungal developmental biology. Nat. Rev. Microbiol. 3, 421–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yanagida, M. The model unicellular eukaryote, Schizosaccharomyces pombe. Genome Biol. 3, COMMENT2003 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Steinberg, G. & Perez-Martin, J. Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol. 18, 61–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kabir, M.A., Hussain, M.A. & Ahmad, Z. Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol. 2012, 538694 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Klar, T.A. & Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Khmelinskii, A., Meurer, M., Duishoev, N., Delhomme, N. & Knop, M. Seamless gene tagging by endonuclease-driven homologous recombination. PLoS ONE 6, e23794 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prillinger, H. et al. Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13, 945–960 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Melan, M.A. & Sluder, G. Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J. Cell Sci. 101 (Part 4), 731–743 (1992).

    Article  PubMed  Google Scholar 

  37. Adams, A.E. & Pringle, J.R. Staining of actin with fluorochrome-conjugated phalloidin. Methods Enzymol. 194, 729–731 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Schnell, U., Dijk, F., Sjollema, K.A. & Giepmans, B.N.G. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9, 152–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Zessin, P.J., Kruger, C.L., Malkusch, S., Endesfelder, U. & Heilemann, M. A hydrophilic gel matrix for single-molecule super-resolution microscopy. Opt. Nanosc. 2, 1–1 (2013).

    Article  Google Scholar 

  40. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bossi, M. et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett. 8, 2463–2468 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lampe, A., Haucke, V., Sigrist, S.J., Heilemann, M. & Schmoranzer, J. Multi-colour direct STORM with red emitting carbocyanines. Biol. Cell 104, 229–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Manley, S., Gunzenhäuser, J. & Olivier, N. A starter kit for point-localization super-resolution imaging. Curr. Opin. Chem. Biol. 15, 813–821 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 7, 339–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wolter, S. et al. Real-time computation of subdiffraction-resolution fluorescence images. J. Microsc. 237, 12–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Wolter, S., Endesfelder, U., van de Linde, S., Heilemann, M. & Sauer, M. Measuring localization performance of super-resolution algorithms on very active samples. Opt. Express 19, 7020–7033 (2011).

    Article  PubMed  Google Scholar 

  47. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9, 1040–1041 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Quan, T. et al. Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt. Express 18, 11867–11876 (2010).

    Article  PubMed  Google Scholar 

  49. van de Linde, S., Sauer, M. & Heilemann, M. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J. Struct. Biol. 164, 250–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Dempsey, G.T. A user's guide to localization-based super-resolution fluorescence imaging. Methods Cell Biol. 114, 561–592 (2013).

    Article  PubMed  Google Scholar 

  51. Kellogg, D.R., Mitchison, T.J. & Alberts, B.M. Behaviour of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Wheatley, S.P. & Wang, Y.L. Indirect immunofluorescence microscopy in cultured cells. Methods Cell Biol. 57, 313–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Article  Google Scholar 

  54. Small, A. & Stahlheber, S. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 11, 267–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Stradalova, V. et al. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 122, 2887–2894 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Oh, Y. & Bi, E. Septin structure and function in yeast and beyond. Trends Cell Biol. 21, 141–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Jaspersen, S.L. & Winey, M. The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell Dev. Biol. 20, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Guthrie, C. & Fink, G.R. (eds.) Guide to Yeast Genetics and Molecular Biology, Vol. 194. (Elsevier, 1991).

Download references

Acknowledgements

We thank G. Shtengel (Janelia Farm, Howard Hughes Medical Institute, Ashburn, Virginia, USA) for sharing sample preparation knowledge and discussions. We thank the entire Ewers laboratory for discussions. We thank Y. Barral (Institute of Biochemistry, ETH Zurich, Zurich, Switzerland) for a plasmid. This work was supported by the Swiss National Centre of Competence in Research (NCCR) Neural Plasticity and Repair and Holcim, and by the Swiss National Competence Center for Biomedical Imaging (NCCBI).

Author information

Authors and Affiliations

Authors

Contributions

C.K. and H.E. designed the research and analyzed the data. C.K. conducted the experiments. H.E. and C.K wrote the paper.

Corresponding author

Correspondence to Helge Ewers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Quenching of glutaraldehyde by NaBH4 is required when using AF647-coupled anti-GFP nanobodies for immunostaining.

Budding yeast expressing Cdc11-GFP (strain YJR076C from GFP-collection) was treated with AF647-coupled anti-GFP nanobodies (Procedure until step 10| (A)). Shown is AF647 fluorescence. (a) No NaBH4 treatment was employed after fixation. The cell exhibits strong nonspecific anti-GFP nanobody staining and Cdc11-GFP staining is not very pronounced. (b) and (c) show that NaBH4 treatment for 30 min significantly reduces nonspecific binding. Longer treatment of the sample with NaBH4 (10 mg/ml) does not result in further improvements and therefore is not necessary. All scale bars are 10 μm.

Supplementary Figure 2 Optimization of blocking with different reagents.

Cdc11-SNAPf-tag expressing budding yeast cells were labeled as described (Procedure Step 10| (B)). Before application of BG-AF647, samples were treated with either Image-iT™ FX, bovine serum albumin (BSA) or horse serum (HS). After completion of the labeling procedure, images were acquired with identical settings and processed to identical brightness levels in ImageJ for a quantitative comparison of blocking efficiency. In general, all three blocking reagents are applicable to reduce the nonspecific background for superresolution imaging. Image-iT™ FX performs slightly better and might be considered under conditions when animal sera are not blocking efficiently. All scale bars are 5 μm.

Supplementary Figure 3 Saturation of labeling and the resulting fluorescent background.

An experiment was performed with budding yeast expressing septin Cdc11-SNAPf-tag and labeled with BG-AF647 (Procedures step 10| (B)). (a) Staining solution was exchanged after 30 min to PBS and cells were imaged. Subsequently, the labeling solution was applied a second time to the same sample. (b) After 90 min, the cells exhibit bright and nonspecific AF647 staining in the cytoplasm. Saturation of labeling is reached. Images of autofluorescence in the GFP channel are shown to demonstrate that signal in the cytoplasm is AF647-specific. All scale bars are 5 μm.

Supplementary Figure 4 Example of a less abundant protein in yeast, the spindle pole body protein Spc42.

Budding yeast (YKL042W from yeast clone GFP-collection) expressing Spc42-GFP was treated with AF647-coupled anti-GFP nanobodies (Procedure until step 10| (A)). (a) Left-hand image shows wide-field fluorescence of the GFP signal. Right-hand image shows wide-field fluorescence of the AF647 signal. Scale bars are 2 µm. (b) Superresolution image of right-hand image in (a). Scale bar is 2 µm. (c) Zoom of the insets in (b). Inset 1 shows a single spindle pole body. In inset 2, the spindle pole body starts to duplicate and in inset 3, two spindle pole bodies are detectable. Scale bars are 500 nm.

Supplementary Figure 5 Gold Nanorods as fiducials linked to the budding yeast cell wall.

Yeast cell preparations incubated with 200 x and 1,000 x dilutions from a stock solution of Gold Nanorods conjugated to streptavidin are shown to demonstrate the respective labeling density in a field of view. The phase contrast image merged with the AF647 channel demonstrates the attachment of the fiducials to the yeast cell wall and their bright fluorescence in the single-molecule localization microcopy channel. All scale bars are 5 μm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Methods (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, C., Ewers, H. Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast. Nat Protoc 10, 1007–1021 (2015). https://doi.org/10.1038/nprot.2015.060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing