Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching

This article has been updated

Abstract

Proteins within most macromolecular complexes or organelles continuously turn over. This turnover results from association and dissociation reactions that are mediated by each of the protein's functional domains. Thus, studying organelle or macromolecular formation from the bottom up using theoretical and computational modeling approaches will necessitate the determination of all of these reaction rates in vivo. Yet current methods for examining protein dynamics either necessitate highly specialized equipment or limit themselves to basic measurements. In this protocol, we describe a broadly applicable method based on fluorescence recovery after photobleaching (FRAP) for determining how many reaction processes participate in the turnover of any given protein of interest, for characterizing their apparent association and dissociation rates, and for determining their relative importance in the turnover of the overall protein population. Experiments were performed in melanoma M2 cells expressing mutant forms of ezrin that provide a link between the plasma membrane and the cortical actin cytoskeleton. We also describe a general strategy for the identification of the protein domains that mediate each of the identified turnover processes. Our protocol uses widely available laser-scanning confocal microscopes, open-source software, graphing software and common molecular biology techniques. The entire FRAP experiment preparation, data acquisition and analysis require 3–4 d.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Preparatory steps for FRAP data acquisition.
Figure 3: Data analysis and fitting.
Figure 4: Anticipated results.

Similar content being viewed by others

Change history

  • 01 July 2015

     In the version of this article initially published, the files described in the Supplementary Methods were missing and have now been uploaded and made accessible as supplementary information with the published version of the article. The error has been corrected in this file as of 1 July 2015.

References

  1. Sprague, B.L. & McNally, J.G. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91 (2005).

    Article  CAS  Google Scholar 

  2. Bancaud, A., Huet, S., Rabut, G. & Ellenberg, J. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb. Protoc. 2010 pdb.top90 (2010).

  3. Mukhina, S., Wang, Y.L. & Murata-Hori, M. α-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev. Cell 13, 554–565 (2007).

    Article  CAS  Google Scholar 

  4. Wu, Y.X., Masison, D.C., Eisenberg, E. & Greene, L.E. Application of photobleaching for measuring diffusion of prion proteins in cytosol of yeast cells. Methods 39, 43–49 (2006).

    Article  CAS  Google Scholar 

  5. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

  6. Soumpasis, D.M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97 (1983).

    Article  CAS  Google Scholar 

  7. Yguerabide, J., Schmidt, J.A. & Yguerabide, E.E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys. J. 40, 69–75 (1982).

    Article  CAS  Google Scholar 

  8. Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).

    Article  CAS  Google Scholar 

  9. Kang, M., Day, C.A., Drake, K., Kenworthy, A.K. & DiBenedetto, E. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys. J. 97, 1501–1511 (2009).

    Article  CAS  Google Scholar 

  10. Goehring, N.W., Chowdhury, D., Hyman, A.A. & Grill, S.W. FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys. J. 99, 2443–2452 (2010).

    Article  CAS  Google Scholar 

  11. Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121 (2004).

    Article  CAS  Google Scholar 

  12. Al Tanoury, Z. et al. Quantitative kinetic study of the actin-bundling protein L-plastin and of its impact on actin turn-over. PLoS ONE 5, e9210 (2010).

    Article  Google Scholar 

  13. Beaudouin, J., Mora-Bermudez, F., Klee, T., Daigle, N. & Ellenberg, J. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys. J. 90, 1878–1894 (2006).

    Article  CAS  Google Scholar 

  14. Fritzsche, M., Lewalle, A., Duke, T., Kruse, K. & Charras, G. Analysis of turnover dynamics of the submembranous actin cortex. Mol. Biol. Cell 24, 757–767 (2013).

    Article  CAS  Google Scholar 

  15. Fritzsche, M., Thorogate, R. & Charras, G. Quantitative analysis of ezrin turnover dynamics in the actin cortex. Biophys. J. 106, 343–353 (2014).

    Article  CAS  Google Scholar 

  16. Sprague, B.L., Pego, R.L., Stavreva, D.A. & McNally, J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004).

    Article  CAS  Google Scholar 

  17. Sbalzarini, I.F., Mezzacasa, A., Helenius, A. & Koumoutsakos, P. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89, 1482–1492 (2005).

    Article  CAS  Google Scholar 

  18. Siggia, E.D., Lippincott-Schwartz, J. & Bekiranov, S. Diffusion in inhomogeneous media: theory and simulations applied to whole cell photobleach recovery. Biophys. J. 79, 1761–1770 (2000).

    Article  CAS  Google Scholar 

  19. Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  20. Hofling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013).

    Article  Google Scholar 

  21. Lewalle, A. et al. A phenomenological density-scaling approach to lamellipodial actin dynamics(dagger). Interface Focus 4, 20140006 (2014).

    Article  Google Scholar 

  22. Wilson, K. et al. Mechanisms of leading edge protrusion in interstitial migration. Nat. Commun. 4, 2896 (2013).

    Article  Google Scholar 

  23. Haustein, E. & Schwille, P. Trends in fluorescence imaging and related techniques to unravel biological information. HFSP J. 1, 169–180 (2007).

    Article  CAS  Google Scholar 

  24. Kim, S.A., Heinze, K.G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods 4, 963–973 (2007).

    Article  CAS  Google Scholar 

  25. Oh, D., Zidovska, A., Xu, Y. & Needleman, D.J. Development of time-integrated multipoint moment analysis for spatially resolved fluctuation spectroscopy with high time resolution. Biophys. J. 101, 1546–1554 (2011).

    Article  CAS  Google Scholar 

  26. Hebert, B., Costantino, S. & Wiseman, P.W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614 (2005).

    Article  CAS  Google Scholar 

  27. Watanabe, N. Inside view of cell locomotion through single-molecule: fast F-/G-actin cycle and G-actin regulation of polymer restoration. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 62–83 (2010).

    Article  CAS  Google Scholar 

  28. Watanabe, N. & Mitchison, T.J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  CAS  Google Scholar 

  29. Mendoza, M.C., Besson, S. & Danuser, G. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics. Curr. Protoc. Cytom. 62, 2.18.1–2.18.26 (2012).

    Article  Google Scholar 

  30. Danuser, G. & Waterman-Storer, C.M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).

    Article  CAS  Google Scholar 

  31. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996).

    Article  CAS  Google Scholar 

  32. Holmes, W.R. & Edelstein-Keshet, L. A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol. 8, e1002793 (2012).

    Article  CAS  Google Scholar 

  33. Carlsson, A.E. & Sept, D. Mathematical modeling of cell migration. Methods Cell Biol. 84, 911–937 (2008).

    Article  CAS  Google Scholar 

  34. Turlier, H., Audoly, B., Prost, J. & Joanny, J.F. Furrow constriction in animal cell cytokinesis. Biophys. J.l 106, 114–123 (2014).

    Article  CAS  Google Scholar 

  35. Zumdieck, A., Kruse, K., Bringmann, H., Hyman, A.A. & Julicher, F. Stress generation and filament turnover during actin ring constriction. PLoS ONE 2, e696 (2007).

    Article  Google Scholar 

  36. Loughlin, R., Heald, R. & Nedelec, F. A computational model predicts Xenopus meiotic spindle organization. J. Cell Biol. 191, 1239–1249 (2010).

    Article  CAS  Google Scholar 

  37. Lenne, P.F. et al. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J. 25, 3245–3256 (2006).

    Article  CAS  Google Scholar 

  38. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005).

    Article  CAS  Google Scholar 

  39. Smith, M.B., Kiuchi, T., Watanabe, N. & Vavylonis, D. Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys. J. 104, 247–257 (2013).

    Article  CAS  Google Scholar 

  40. Roh-Johnson, M. et al. Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335, 1232–1235 (2012).

    Article  CAS  Google Scholar 

  41. Green, M.R. & Sambrook, J. Molecular Cloning 4th edn, (Cold Spring Harbor Laboratory Press, 2012).

  42. Weiss, M. Challenges and artifacts in quantitative photobleaching experiments. Traffic 5, 662–671 (2004).

    Article  CAS  Google Scholar 

  43. Wagner, M.L. & Tamm, L.K. Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers. Biophys. J. 81, 266–275 (2001).

    Article  CAS  Google Scholar 

  44. Kenworthy, A.K. Fluorescence-based methods to image palmitoylated proteins. Methods 40, 198–205 (2006).

    Article  CAS  Google Scholar 

  45. Niv, H., Gutman, O., Kloog, Y. & Henis, Y.I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

    Article  CAS  Google Scholar 

  46. Lewalle, A. et al. A phenomenological density-scaling approach to lamellipodial actin dynamics. Interface Focus 4, 20140006 (2014).

    Article  Google Scholar 

  47. Feder, T.J., Brust-Mascher, I., Slattery, J.P., Baird, B. & Webb, W.W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 70, 2767–2773 (1996).

    Article  CAS  Google Scholar 

  48. Blonk, J.C.G., Don, A., Vanaalst, H. & Birmingham, J.J. Fluorescence photobleaching recovery in the confocal scanning light-microscope. J. Microsc-Oxford 169, 363–374 (1993).

    Article  CAS  Google Scholar 

  49. Periasamy, N. & Verkman, A.S. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75, 557–567 (1998).

    Article  CAS  Google Scholar 

  50. Wolf, D.E. Theory of fluorescence recovery after photobleaching measurements on cylindrical surfaces. Biophys. J. 61, 487–493 (1992).

    Article  CAS  Google Scholar 

  51. Coscoy, S. et al. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc. Natl. Acad. Sci. USA 99, 12813–12818 (2002).

    Article  CAS  Google Scholar 

  52. Tardy, Y., McGrath, J.L., Hartwig, J.H. & Dewey, C.F. Interpreting photoactivated fluorescence microscopy measurements of steady-state actin dynamics. Biophys. J. 69, 1674–1682 (1995).

    Article  CAS  Google Scholar 

  53. Cunningham, C.C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).

    Article  CAS  Google Scholar 

  54. Hao, J.J. et al. Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J. Cell Biol. 184, 451–462 (2009).

    Article  CAS  Google Scholar 

  55. Shi, C., Cisewski, S.E., Bell, P.D. & Yao, H. Measurement of three-dimensional anisotropic diffusion by multiphoton fluorescence recovery after photobleaching. Ann. Biomed. Eng. 42, 555–565 (2014).

    Article  Google Scholar 

  56. van Rheenen, J., Langeslag, M. & Jalink, K. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys. J. 86, 2517–2529 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University College London (UCL) Comprehensive Biomedical Research Centre for generous funding of microscopy equipment. M.F. was funded by a Human Frontier of Science Program, Young investigator grant to G.C. (RGY 67/2008). G.C. was supported by a University Research Fellowship from the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

M.F. and G.C. developed the concept and designed the experimental approach. M.F. carried out the experiments and implemented the data analysis. G.C. and M.F. wrote the article.

Corresponding authors

Correspondence to Marco Fritzsche or Guillaume Charras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritzsche, M., Charras, G. Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc 10, 660–680 (2015). https://doi.org/10.1038/nprot.2015.042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing